MA 1111/1212: Linear Algebra
Tutorial problems, November 4, 2015
In problems $1-5$, determine whether, for the given n, the vectors $\left\{v_{i}\right\}$ in \mathbb{R}^{n}
(i) are linearly independent;
(ii) span \mathbb{R}^{n};
(iii) form a basis of \mathbb{R}^{n}.

1. $\mathrm{n}=2, v_{1}=\binom{-1}{1}, v_{2}=\binom{7}{-7}$.
2. $n=2, v_{1}=\binom{-1}{1}, v_{2}=\binom{1}{1}$.
3. $n=2, v_{1}=\binom{-1}{1}, v_{2}=\binom{2}{1}, v_{3}=\binom{1}{1}$.
4. $n=3, v_{1}=\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right), v_{2}=\left(\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right), v_{3}=\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)$.
5. $n=3, v_{1}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.

Optional question (if you have some time left). Several vectors in \mathbb{R}^{3} form pairwise obtuse angles (strictly greater than 90°). Show that if we consider the set of vectors obtained by removing any one of them, the rest are linearly independent.

