MA 1111/1212: Linear Algebra Tutorial problems, December 9, 2015

1. The set of all complex numbers forms a 2-dimensional (real) vector space with a basis 1, i. Compute, relative to this basis, the matrix of the linear transformation of that space which maps every complex number z to (3-7i)z.

2. The space of all 2×2 -matrices forms a 4-dimensional vector space with a basis $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, and $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Compute, relative to this basis, the matrix of the linear transformation of that space which maps every 2×2 -matrix X to $\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \cdot X - X \cdot \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$.

3. Let $V = \mathbb{R}^2$, $e_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ a basis of V, $\varphi \colon V \to V$ a linear transformation

whose matrix $A_{\varphi,e}$ relative to the basis e_1 , e_2 is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

(a) Find the transition matrix M_{ef} from the basis e_1 , e_2 to the basis $f_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $f_2 = \begin{pmatrix} 4 \\ -9 \end{pmatrix}$, and compute the matrix $A_{\varphi,f}$.

(b) Compute the matrix $A_{\varphi,\mathbf{v}}$ of the linear transformation φ relative to the basis of standard unit vectors $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

4. For the matrix
$$A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$$
, find a closed formula for A^n .