MA 1111/1212: Linear Algebra
Tutorial problems, December 9, 2015

1. The set of all complex numbers forms a 2-dimensional (real) vector space with a basis $1, i$. Compute, relative to this basis, the matrix of the linear transformation of that space which maps every complex number $z$ to $(3-7 i) z$.
2. The space of all $2 \times 2$-matrices forms a 4 -dimensional vector space with a basis $e_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), e_{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), e_{3}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, and $e_{4}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Compute, relative to this basis, the matrix of the linear transformation of that space which maps every $2 \times 2$ matrix $X$ to $\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right) \cdot X-X \cdot\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$.
3. Let $\mathrm{V}=\mathbb{R}^{2}, e_{1}=\binom{1}{1}, e_{2}=\binom{2}{3}$ a basis of $\mathrm{V}, \varphi: \mathrm{V} \rightarrow \mathrm{V}$ a linear transformation whose matrix $A_{\varphi, \mathrm{e}}$ relative to the basis $e_{1}, e_{2}$ is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
(a) Find the transition matrix $M_{e f}$ from the basis $e_{1}, e_{2}$ to the basis $f_{1}=\binom{1}{-2}$, $f_{2}=\binom{4}{-9}$, and compute the matrix $A_{\varphi, f}$.
(b) Compute the matrix $A_{\varphi, v}$ of the linear transformation $\varphi$ relative to the basis of standard unit vectors $v_{1}=\binom{1}{0}, v_{2}=\binom{0}{1}$.
4. For the matrix $A=\left(\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right)$, find a closed formula for $A^{n}$.
