MA 1111: Linear Algebra I

Tutorial problems, October 7, 2015

1. $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$ is certainly defined, computing this vector amounts to computing vector products twice.
$\mathbf{v} \times(\mathbf{u} \cdot \mathbf{w})$ is not defined: vector products are defined for two vectors.
$\mathbf{u} \times \mathbf{v} \times \mathbf{w}$ is not defined: we only know how to compute vector products of two vectors, and depending on the choice of bracketings, $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$ and $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$ leads to two generally different results.
$(\mathbf{u} \cdot \mathbf{w}) \cdot \mathbf{v}$ is, superficially, not defined because the dot product is defined for two vectors. However, there is a convention to write $\mathbf{c} \cdot \mathbf{v}$ for $\mathbf{c v}$, if \mathbf{c} is a scalar and \mathbf{v} is a vector, and if this convention is adopted, it is OK (see also notation in the hint to question 2 which uses that convention).
$\mathbf{u} \cdot(\mathbf{w} \cdot \mathbf{v})$ is, contrary to the previous one, never defined, since we can form the expression $\mathbf{c v}$ but not $\mathbf{v c}$; scalars always go before vectors.
$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is defined: it is a scalar product of two vectors one of which is a vector product of two vectors.
$\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w}$ is not defined, since depending on the choice of bracketings we get some very different things, one defined and the other not.
2. We have

$$
\begin{aligned}
& \mathbf{u} \times(\mathbf{v} \times \mathbf{w})+\mathbf{v} \times(\mathbf{w} \times \mathbf{u})+\mathbf{w} \times(\mathbf{u} \times \mathbf{v})= \\
& \quad \\
& \quad(\mathbf{u} \cdot \mathbf{w}) \cdot \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}+(\mathbf{v} \cdot \mathbf{u}) \cdot \mathbf{w}-(\mathbf{v} \cdot \mathbf{w}) \cdot \mathbf{u}+ \\
& \quad(\mathbf{w} \cdot \mathbf{v}) \cdot \mathbf{u}-(\mathbf{w} \cdot \mathbf{u}) \cdot \mathbf{v}=\mathbf{0}
\end{aligned}
$$

(because $\mathbf{u} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{u}$ etc.).
3. Substituting $x=1-a y$ in the second equation, we get $a(1-a y)+y=0$, so $a-a^{2} y+y=0$, or in other words $a=y\left(a^{2}-1\right)$. Therefore for $a= \pm 1$ there are no solutions, and for $a \neq \pm 1$ there is just one solution $y=\frac{a}{a^{2}-1}$, $x=1-a y=\frac{-1}{a^{2}-1}$.
4.
(a)

(d)

(h) the transformation is $(x, y) \mapsto(1-x, y)$.

