MA 1111/1212: Linear Algebra
Tutorial problems, December 9, 2015

1. Let us compute the images of the basis vectors: $1 \mapsto(3-7 \mathfrak{i}) \cdot 1=3-7 \mathfrak{i})$, $\mathfrak{i} \mapsto(3-7 \mathfrak{i}) \cdot \mathfrak{i}=7+3 \mathfrak{i}$. This instantly leads to the matrix $\left(\begin{array}{cc}3 & 7 \\ -7 & 3\end{array}\right)$.
2. Let us compute the images of the basis vectors:

$$
\begin{aligned}
e_{1} & \mapsto\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)=-e_{1}-e_{2}+e_{3}, \\
e_{2} & \mapsto\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=-e_{1}+e_{4}, \\
e_{3} & \mapsto\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
3 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=e_{1}-e_{4}, \\
e_{4} & \mapsto\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)=e_{2}-e_{3}+e_{4} .
\end{aligned}
$$

This immediately leads to the matrix

$$
\left(\begin{array}{cccc}
-1 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 1
\end{array}\right)
$$

3. (a) Let us compute the transition matrix $M_{e, f}$. Solving the systems of equations $f_{1}=c_{11} e_{1}+c_{21} e_{2}$ and $f_{2}=c_{12} e_{1}+c_{22} e_{2}$, we get $c_{11}=7, c_{21}=-3, c_{12}=30, c_{22}=-13$, therefore $M_{\mathbf{e}, \mathbf{f}}=\left(\begin{array}{cc}7 & 30 \\ -3 & -13\end{array}\right)$. Therefore, we have

$$
A_{\varphi, \mathrm{f}}=M_{\mathrm{e}, \mathrm{f}}^{-1} A_{\varphi, \mathrm{e}} M_{\mathrm{e}, \mathrm{f}}=\left(\begin{array}{cc}
171 & 731 \\
-40 & -171
\end{array}\right)
$$

(b) We clearly have $M_{v, e}=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$, therefore $M_{e, v}=M_{v, e}^{-1}=\left(\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right)$. Therefore,

$$
A_{\varphi, \mathrm{v}}=M_{\mathrm{e}, \mathrm{v}}^{-1} A_{\varphi, \mathrm{e}} M_{\mathrm{e}, \mathrm{v}}=\left(\begin{array}{cc}
5 & -3 \\
8 & -5
\end{array}\right)
$$

4. We have $\operatorname{det}(A-a I)=(a-3)(a-2)-2=a^{2}-5 a+4=(a-1)(a-4)$. This means that we should expect the linear map given by this matrix to have, relative to some basis, the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)$. To find the corresponding basis, we solve the equations $A x=x$ and $A x=4 x$. Solving these, we find solutions $\binom{-1}{1}$ and $\binom{2}{1}$ respectively. Thus, if we put $C=\left(\begin{array}{cc}-1 & 2 \\ 1 & 1\end{array}\right)$, we have $C^{-1} A C=\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)$, and $C^{-1} A^{n} C=\left(\begin{array}{cc}1 & 0 \\ 0 & 4^{n}\end{array}\right)$. Therefore,

$$
A^{n}=C\left(\begin{array}{cc}
1 & 0 \\
0 & 4^{n}
\end{array}\right) C^{-1}=\left(\begin{array}{cc}
\frac{2 \cdot 4^{n}+1}{3} & \frac{2 \cdot 4^{n}-2}{4^{3}-1} \\
\frac{4^{n}+2}{3}
\end{array}\right)
$$

