MA 1111: Linear Algebra I

Selected answers/solutions to the assignment for September 28, 2018

1. (a) Denoting by $\mathbf{r}=(x, y, z)$ the vector from the origin to a generic point (x, y, z) in this plane, and by \mathbf{u} the vector from the origin to $(1,-1,1)$, we get $(\mathbf{r}-\mathbf{u}) \cdot \mathbf{n}=0$, so $(x-1)-2(y+1)+(z-1)=0$, or $x-2 y+z=4$.
(b) Denoting the vectors from the origin to these points by \mathbf{u}, \mathbf{v}, and \mathbf{w}, we note that for a perpendicular vector, we can take $(\mathbf{v}-\mathbf{u}) \times(\mathbf{w}-\mathbf{u})=(6,2,7)$. Now, analogously to the previous question, we obtain

$$
6(x-1)+2(y+1)+7(z-1)=0
$$

or $6 x+2 y+7 z=11$.
2. We have $x=\frac{1+y-4 z}{2}$, so the second equation becomes $\frac{7}{2}+\frac{7}{2} y-14 z+2 y+z=5$, $\frac{11}{2} y-13 z=\frac{3}{2}, y=\frac{2}{11}\left(\frac{3}{2}+13 z\right)$. If we let z equal to an arbitrary value t, we get $x=\frac{1+\frac{3}{11}+\frac{26}{11} t-4 t}{2}=\frac{7}{11}-\frac{9}{11} t$. Thus,

$$
\begin{gathered}
x=\frac{7}{11}-\frac{9}{11} t \\
y=\frac{3}{11}+\frac{26}{11} t \\
z=t
\end{gathered}
$$

3. The system of equations is

$$
\left\{\begin{array}{l}
x_{1}+4 x_{2}+5 x_{3}+x_{4}=1 \\
x_{1}+2 x_{2}+2 x_{3}+x_{4}=-4 \\
x_{1}+2 x_{2}+5 x_{4}=-4
\end{array}\right.
$$

Below, the solution is phrased using transformations of equations; alternatively, one can perform same operations on matrices. We have

$$
\begin{aligned}
& \left\{\begin{array}{r}
x_{1}+4 x_{2}+5 x_{3}+x_{4}=1, \\
x_{1}+2 x_{2}+2 x_{3}+x_{4} \\
x_{1}+2 x_{2} \\
+5 x_{4}
\end{array} \quad=-4, .(2)-(1),(3)-(1) \quad\left\{\begin{array}{cl}
x_{1}+4 x_{2}+5 x_{3}+x_{4} & =1, \\
-2 x_{2}-3 x_{3} & =-5, \\
-2 x_{2}-5 x_{3}+4 x_{4} & =-5,
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ x _ { 1 } \quad - x _ { 3 } + x _ { 4 } } & { = - 9 } \\
{ x _ { 2 } + \frac { 3 } { 2 } x _ { 3 } } & { = \frac { 5 } { 2 } , } \\
{ x _ { 3 } - 2 x _ { 4 } } & { = 0 , }
\end{array} \quad \stackrel { (1) + (3) , (2) - 3 / 2 \times (3) } { \longmapsto } \left\{\begin{array}{rl}
x_{1} & -x_{4} \\
x_{2}+3 x_{3} & =\frac{5}{2}, \\
& x_{3}-2 x_{4} \\
& =0,
\end{array}\right.\right.
\end{aligned}
$$

We see that x_{4} can be assigned an arbitrary value t, and the general solution to this system is

$$
\begin{aligned}
& \mathrm{x}_{1}=-9+\mathrm{t} \\
& \mathrm{x}_{2}=5 / 2-3 \mathrm{t} \\
& \mathrm{x}_{3}=2 \mathrm{t} \\
& \mathrm{x}_{4}=\mathrm{t}
\end{aligned}
$$

where t is any number.
4. We have $x=1-b-4 a y$, and substituting that into the second equation we get

$$
a(1-b-4 a y)+y=b
$$

so $y\left(1-4 a^{2}\right)=b-a+a b$. This means that for $a \neq \pm \frac{1}{2}$ and every b the system has exactly one solution, for $a=\frac{1}{2}$ we have a condition $b-\frac{1}{2}+\frac{1}{2} b=0$ for the system to have solutions (this reads $b=\frac{1}{3}$, so for $\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{1}{3}$ there are infinitely many solutions, and for $\mathrm{a}=\frac{1}{2}, \mathrm{~b} \neq \frac{1}{3}$ the system has no solutions), and for $a=-\frac{1}{2}$ we have the condition $b+\frac{1}{2}-\frac{1}{2} b=0$ for the system to have solutions (this reads $b=-1$, so for $a=-\frac{1}{2}, b=-1$ there are infinitely many solutions, and for $a=-\frac{1}{2}, b \neq-1$ the system has no solutions).

