MA 1111: Linear Algebra I

Selected answers/solutions to the assignment for September 28, 2018

1. (a) Denoting by $\mathbf{r} = (x, y, z)$ the vector from the origin to a generic point (x, y, z) in this plane, and by **u** the vector from the origin to (1, -1, 1), we get $(\mathbf{r} - \mathbf{u}) \cdot \mathbf{n} = 0$, so (x - 1) - 2(y + 1) + (z - 1) = 0, or x - 2y + z = 4.

(b) Denoting the vectors from the origin to these points by \mathbf{u} , \mathbf{v} , and \mathbf{w} , we note that for a perpendicular vector, we can take $(\mathbf{v}-\mathbf{u})\times(\mathbf{w}-\mathbf{u}) = (6, 2, 7)$. Now, analogously to the previous question, we obtain

$$6(x-1) + 2(y+1) + 7(z-1) = 0,$$

or 6x + 2y + 7z = 11. **2.** We have $x = \frac{1+y-4z}{2}$, so the second equation becomes $\frac{7}{2} + \frac{7}{2}y - 14z + 2y + z = 5$, $\frac{11}{2}y - 13z = \frac{3}{2}$, $y = \frac{2}{11}(\frac{3}{2} + 13z)$. If we let z equal to an arbitrary value t, we get $x = \frac{1+\frac{3}{11}+\frac{26}{11}t-4t}{2} = \frac{7}{11} - \frac{9}{11}t$. Thus,

$$x = \frac{7}{11} - \frac{9}{11}t,$$

$$y = \frac{3}{11} + \frac{26}{11}t,$$

$$z = t.$$

3. The system of equations is

$$\begin{cases} x_1 + 4x_2 + 5x_3 + x_4 = 1, \\ x_1 + 2x_2 + 2x_3 + x_4 = -4, \\ x_1 + 2x_2 + 5x_4 = -4. \end{cases}$$

Below, the solution is phrased using transformations of equations; alternatively, one can perform same operations on matrices. We have

$$\begin{cases} x_{1} + 4x_{2} + 5x_{3} + x_{4} = 1, \\ x_{1} + 2x_{2} + 2x_{3} + x_{4} = -4, \\ x_{1} + 2x_{2} + 5x_{4} = -4. \end{cases} \begin{cases} x_{1} + 4x_{2} + 5x_{3} + x_{4} = 1, \\ -2x_{2} - 3x_{3} = -5, \\ -2x_{2} - 3x_{3} + 4x_{4} = -5, \end{cases} \begin{cases} x_{1} + 4x_{2} + 5x_{3} + x_{4} = 1, \\ -2x_{2} - 3x_{3} = -5, \\ -2x_{2} - 3x_{3} + 4x_{4} = -5, \\ -2x_{2} - 3x_{3} + 4x_{4} = -5, \end{cases} \begin{cases} x_{1} - x_{3} + x_{4} = -9, \\ x_{2} + \frac{3}{2}x_{3} = \frac{5}{2}, \\ -2x_{3} + 4x_{4} = -5, \\ x_{2} + \frac{3}{2}x_{3} = \frac{5}{2}, \\ x_{3} - 2x_{4} = 0, \end{cases} \begin{cases} x_{1} - x_{4} = -9, \\ x_{2} + \frac{3}{2}x_{3} = \frac{5}{2}, \\ x_{3} - 2x_{4} = 0, \\ x_{3} - 2x_{4} = 0, \end{cases} \end{cases} \begin{cases} x_{1} - x_{4} = -9, \\ x_{2} + 3x_{3} = \frac{5}{2}, \\ x_{3} - 2x_{4} = 0, \\ x_{3} - 2x_{4} = 0, \end{cases} \end{cases}$$

We see that $x_4\ \mathrm{can}\ \mathrm{be}\ \mathrm{assigned}\ \mathrm{an}\ \mathrm{arbitrary}\ \mathrm{value}\ t,$ and the general solution to this system is

$$x_1 = -9 + t$$

$$x_2 = 5/2 - 3t$$

$$x_3 = 2t$$

$$x_4 = t$$

where t is any number.

4. We have x = 1 - b - 4ay, and substituting that into the second equation we get

$$a(1-b-4ay)+y=b,$$

so $y(1-4a^2) = b - a + ab$. This means that for $a \neq \pm \frac{1}{2}$ and every b the system has exactly one solution, for $a = \frac{1}{2}$ we have a condition $b - \frac{1}{2} + \frac{1}{2}b = 0$ for the system to have solutions (this reads $b = \frac{1}{3}$, so for $a = \frac{1}{2}$, $b = \frac{1}{3}$ there are infinitely many solutions, and for $a = \frac{1}{2}$, $b \neq \frac{1}{3}$ the system has no solutions), and for $a = -\frac{1}{2}$ we have the condition $b + \frac{1}{2} - \frac{1}{2}b = 0$ for the system to have solutions (this reads b = -1, so for $a = -\frac{1}{2}$, b = -1 there are infinitely many solutions, and for $a = -\frac{1}{2}$, $b \neq -1$ the system has no solutions).