MA 1111: Linear Algebra I

Selected answers/solutions to the assignment for October 5, 2018

1. (a) $A+B$ and $B A$ are not defined, $A B=\binom{2}{1}$;
(b) $A+B$ and $B A$ are not defined, $A B=\binom{7}{4}$;
(c) $A+B$ is not defined, $\mathrm{BA}=\left(\begin{array}{ccc}9 & 5 & 8 \\ 1 & 1 & 2 \\ 15 & 7 & 10\end{array}\right), \mathrm{AB}=\left(\begin{array}{ll}5 & 21 \\ 5 & 15\end{array}\right)$;
(d) $A+B=\left(\begin{array}{ll}4 & 8 \\ 3 & 3\end{array}\right)$, $\mathrm{BA}=\left(\begin{array}{ll}8 & 12 \\ 6 & 10\end{array}\right), \mathrm{AB}=\left(\begin{array}{cc}12 & 16 \\ 4 & 6\end{array}\right)$.
2. The easiest thing to do is to apply the algorithm from the lecture: take the matrix ($A \mid I_{n}$) and bring it to the reduced row echelon form; the result is $\left(I_{n} \mid A^{-1}\right)$ if the matrix is invertible, and has ($R \mid B$) with $R \neq I_{n}$ otherwise.
(a) $\left(\begin{array}{ll}5 & 3 \\ 2 & 1\end{array}\right)$ is invertible, the inverse is $\left(\begin{array}{cc}-1 & 3 \\ 2 & -5\end{array}\right)$;
(b) $\left(\begin{array}{ll}6 & 3 \\ 2 & 1\end{array}\right)$ is not invertible, since the reduced row echelon form of $(A \mid I)$ is $\left(\begin{array}{cccc}1 & 1 / 2 & 0 & 1 / 2 \\ 0 & 0 & 1 & -3\end{array}\right)$, and the matrix on the left is not the identity;
(c) $\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 0\end{array}\right)$ is not invertible, since in class we proved that only square matrices are invertible;
(d) $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 3 & 9\end{array}\right)$ is invertible; the inverse is $\left(\begin{array}{ccc}-15 / 4 & 9 / 4 & 1 / 4 \\ 7 / 2 & -3 / 2 & -1 / 2 \\ -3 / 4 & 1 / 4 & 1 / 4\end{array}\right)$.
3. (a) Suppose that A is a $k \times l$-matrix, and B is an $m \times n$-matrix. In order for $A B$ to be defined, we must have $l=m$. In order for $B A$ to be defined, we must have $n=k$. Consequently, the size of matrix $A B$ is $k \times n=n \times n$, and the size of the matrix $B A$ is $\mathfrak{m} \times \mathrm{l}=\mathrm{m} \times \mathrm{m}$, which is exactly what we want to prove.
(b) We have

$$
\begin{aligned}
& \operatorname{tr}(\mathrm{UV})=(\mathrm{UV})_{11}+(\mathrm{UV})_{22}+\ldots+(\mathrm{UV})_{n n}=\left(\mathrm{U}_{11} \mathrm{~V}_{11}+\mathrm{U}_{12} \mathrm{~V}_{21}+\ldots+\mathrm{U}_{1 n} \mathrm{~V}_{n 1}\right)+ \\
& \left(\mathrm{U}_{21} \mathrm{~V}_{12}+\mathrm{U}_{22} \mathrm{~V}_{22}+\ldots+\mathrm{U}_{2 n} \mathrm{~V}_{n 2}\right)+\ldots+\left(\mathrm{U}_{n 1} \mathrm{~V}_{1 n}+\mathrm{U}_{n 2} \mathrm{~V}_{2 n}+\ldots+\mathrm{U}_{n n} \mathrm{~V}_{n n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{tr}(\mathrm{VU})=(\mathrm{VU})_{11}+(\mathrm{VU})_{22}+\ldots+(\mathrm{VU})_{\mathrm{nn}}=\left(\mathrm{V}_{11} \mathrm{U}_{11}+\mathrm{V}_{12} \mathrm{U}_{21}+\ldots+\mathrm{V}_{1 n} \mathrm{U}_{n 1}\right)+ \\
& \left(\mathrm{V}_{21} \mathrm{U}_{12}+\mathrm{V}_{22} \mathrm{U}_{22}+\ldots+\mathrm{V}_{2 n} \mathrm{U}_{\mathrm{n} 2}\right)+\ldots+\left(\mathrm{V}_{n 1} \mathrm{U}_{1 n}+\mathrm{V}_{n 2} \mathrm{U}_{2 n}+\ldots+\mathrm{V}_{n n} \mathrm{U}_{n n}\right),
\end{aligned}
$$

so both traces are actually equal to the sum of all products $\mathrm{U}_{i j} \mathrm{~V}_{\mathrm{j} i}$, where i and j range from 1 to n. For the example $U=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), V=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ from class, we have $U V=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\mathrm{VU}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, so even though these matrices are not equal, their traces are equal (they both are equal to 1).
4. (a) For example, $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ would work.
(b) The reduced row echelon form R of A must have a row of zeros, and therefore the product RB will have a row of zeros, and cannot be invertible, but RB is obtained from $A B$ by elementary row operations, so it must be invertible if $A B=I_{3}$ is invertible.

