MA 1111: Linear Algebra I

Selected answers/solutions to the assignment for October 12, 2018

1. (a) Even (12 inversions); (b) odd (17 inversions); (c) odd (17 inversions).
2. We should have $k=4$ (to have all integers from 1 to 6 in the top row; also, the numbers $\mathfrak{i}, \mathfrak{j}$, \mathfrak{l} should be equal (in some order) to $2,4,5$. If $\mathfrak{i}=2, \mathfrak{j}=4, l=5$, we get the permutation $\left(\begin{array}{llllll}5 & 2 & 4 & 3 & 6 & 1 \\ 5 & 1 & 3 & 2 & 6 & 4\end{array}\right)$ which is odd. Other permutations which occur correspond to $\mathfrak{i}=4, \mathfrak{j}=2, l=5$ (even, because we exchange one pair of numbers in an odd permutation), $\mathfrak{i}=2, \mathfrak{j}=5, \mathfrak{l}=4$ (even, because we exchange one pair of numbers in an odd permutation), $\mathfrak{i}=5, \mathfrak{j}=4, l=2$ (even, because we exchange one pair of numbers in an odd permutation), $\mathfrak{i}=4, \mathfrak{j}=5, \mathfrak{l}=2$ (odd, because we exchange two pairs of numbers in an odd permutation), $\mathfrak{i}=5, \mathfrak{j}=2, \mathfrak{l}=4$ (odd, because we exchange two pairs of numbers in an odd permutation). Overall, the answer is $(i, j, k, l)=(4,2,4,5)$, $(i, j, k, l)=(2,5,4,4)$, or $(i, j, k, l)=(5,4,4,2)$.
3. (a) Performing elementary row operations, we get

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & -2 \\
1 & 1 & 3 \\
4 & 3 & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 5 \\
0 & 3 & 9
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 5 \\
0 & 0 & -6
\end{array}\right)=-6
$$

(b) Performing elementary row operations, we get

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
2 & 0 & 3 & -1 \\
4 & 2 & 3 & 1 \\
3 & 0 & 0 & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
0 & -2 & 7 & 1 \\
0 & -2 & 11 & 5 \\
0 & -3 & 6 & 4
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
0 & -2 & 7 & 1 \\
0 & 0 & 4 & 4 \\
0 & 0 & -9 / 2 & 5 / 2
\end{array}\right)= \\
&=4 / 2 \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
0 & -2 & 7 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & -9 & 5
\end{array}\right)=2 \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
0 & -2 & 7 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 14
\end{array}\right)=-56 .
\end{aligned}
$$

4. (a) Performing elementary row operations, we get

$$
\operatorname{det}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)=\operatorname{det}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
0 & 0 & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=1 .
$$

(b) Performing elementary row operations, we get
$\operatorname{det}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4\end{array}\right)=\operatorname{det}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 0 & 0 & 0 & 1\end{array}\right)=\operatorname{det}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)=\operatorname{det}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)=1$.
(c) Subtracting from each of the rows the previous row (from the row n up), we get the matrix

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & \ldots & 1 & 1 \\
0 & 1 & 1 & \ldots & 1 & 1 \\
0 & 0 & 1 & \ldots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & 1 & 1 \\
0 & 0 & 0 & \ldots & 1 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right),
$$

so the determinant of our matrix is equal to 1 .
5. (a) $\operatorname{det}(A)=(2-c)^{2}-1=c^{2}-4 c+3=(c-1)(c-3)$, so the matrix is not invertible for $\mathrm{c}=1$ and $\mathrm{c}=3$.
(b) Performing elementary row operations, we get

$$
\begin{gathered}
\operatorname{det}(A)=-\operatorname{det}\left(\begin{array}{ccc}
1 & c-1 & 2 \\
3 & 2 & 1+c \\
-1 & 4 c & 3
\end{array}\right)=-\operatorname{det}\left(\begin{array}{ccc}
1 & c-1 & 2 \\
0 & 5-3 c & c-5 \\
0 & 5 c-1 & 5
\end{array}\right)= \\
=-5 \operatorname{det}\left(\begin{array}{ccc}
1 & c-1 & 2 \\
0 & 5-3 c & c-5 \\
0 & c-1 / 5 & 1
\end{array}\right)=-5 \operatorname{det}\left(\begin{array}{ccc}
1 & c-1 & 2 \\
0 & 5-3 c-(c-1 / 5)(c-5) & 0 \\
0 & c-1 / 5 & 1
\end{array}\right)= \\
=-5(5-3 c-(c-1 / 5)(c-5)) \operatorname{det}\left(\begin{array}{ccc}
1 & c-1 & 2 \\
0 & 1 & 0 \\
0 & c-1 / 5 & 1
\end{array}\right)= \\
=\left(5 c^{2}-11 c-20\right) \operatorname{det}\left(\begin{array}{ccc}
1 & c-1 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(5 c^{2}-11 c-20\right)
\end{gathered}
$$

so A is not invertible when c is a root of $5 c^{2}-11 c-20=0$, that is $\frac{11 \pm \sqrt{521}}{10}$.

