MA 1111: Linear Algebra I

Selected answers/solutions to the assignment for October 19, 2018

1. (a) $M_{11}=12, M_{12}=-4, M_{13}=-8, M_{21}=19, M_{22}=7, M_{23}=-10, M_{31}=9, M_{32}=5$, $M_{33}=2$.
(b) $\mathrm{C}_{11}=12, \mathrm{C}_{12}=4, \mathrm{C}_{13}=-8, \mathrm{C}_{21}=-19, \mathrm{C}_{22}=7, \mathrm{C}_{23}=10, \mathrm{C}_{31}=9, \mathrm{C}_{32}=-5$, $\mathrm{C}_{33}=2$.
(c) $2 \cdot 12+4 \cdot 4-8=32$; (d) $2 \cdot 12-19+3 \cdot 9=32$; (e) $-19+3 \cdot 7+3 \cdot 10=32$; (f) $4 \cdot 4+3 \cdot 7-5=32$; (g) $3 \cdot 9-5+5 \cdot 2=32$; (h) $1 \cdot(-8)+3 \cdot 10+5 \cdot 2=32$.
2. (a) The adjugate matrix is equal to $\left(\begin{array}{ccc}12 & -19 & 9 \\ 4 & 7 & -5 \\ -8 & 10 & 2\end{array}\right)$, and the inverse matrix is $\frac{1}{32}\left(\begin{array}{ccc}12 & -19 & 9 \\ 4 & 7 & -5 \\ -8 & 10 & 2\end{array}\right) \cdot(\mathbf{b}) \operatorname{det}\left(\begin{array}{ccc}1 & 4 & 1 \\ -1 & 3 & 3 \\ 1 & 1 & 5\end{array}\right)=40 \operatorname{det}\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & -1 & 3 \\ 3 & 1 & 5\end{array}\right)=-8 \operatorname{det}\left(\begin{array}{ccc}2 & 4 & 1 \\ 1 & 3 & -1 \\ 3 & 1 & 1\end{array}\right)=-16$, so by Cramer's rule the only solution to this system is $\left(\begin{array}{c}5 / 4 \\ -1 / 4 \\ -1 / 2\end{array}\right)$.
3. (a) If B is not invertible, then the system $B x=0$ has a nontrivial solution, so there exists a column $y \neq 0$ such that $B y=0$. We have $A B y=A 0=0$, so the system $A B x=0$ has a nontrivial solution, and $A B$ is not invertible, a contradiction. (b) We have $A=A B B^{-1}$, so A is invertible as a product of invertible matrices.
4. (a) We have $\operatorname{tr}\left(M^{-1} N M\right)=\operatorname{tr}\left(\left(M^{-1} N\right) M\right)=\operatorname{tr}\left(M\left(M^{-1} N\right)\right)=\operatorname{tr}\left(M M^{-1} N\right)=\operatorname{tr}(N)$.
(b) We have

$$
\operatorname{det}\left(M^{-1} N M\right)=\operatorname{det}\left(M^{-1}\right) \operatorname{det}(N) \operatorname{det}(M)=\operatorname{det}\left(M^{-1}\right) \operatorname{det}(M) \operatorname{det}(N)=\operatorname{det}\left(M^{-1} M N\right)=\operatorname{det}(N) .
$$

5. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$; we have $A^{2}=\left(\begin{array}{cc}a^{2}+b c & b(a+d) \\ c(a+d) & d^{2}+b c\end{array}\right)$, so

$$
\begin{aligned}
& A^{2}-\operatorname{tr}(A) A+\operatorname{det}(A) I_{2}= \\
& \quad=\left(\begin{array}{cc}
a^{2}+b c & b(a+d) \\
c(a+d) & d^{2}+b c
\end{array}\right)-\left(\begin{array}{cc}
(a+d) a & (a+d) b \\
(a+d) c & (a+d) d
\end{array}\right)+\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right)=0 .
\end{aligned}
$$

