MA 1111: Linear Algebra I

Selected answers/solutions to the assignment for November 2, 2018

1. (a) Inversions are only formed by n and other numbers -n-1 in total, so the permutation is even for odd n and odd for even n.

(b) *First solution*: this reordering of $1, \ldots, n$ is obtained from the normal ordering as a result of consecutive exchanges of 1 with n, 2 with n-1 etc. The total number of exchanges here is $\frac{n}{2}$ for an even n and $\frac{n-1}{2}$ for an odd n. We know that exchanging two numbers changes the parity, so we need to determine the parity of $\frac{n}{2}$ for an even n and of $\frac{n-1}{2}$ for an odd n. It is easy to see that the latter parity is determined by the remainder of n modulo 4: for n = 4k or n = 4k + 1 the permutation is even, otherwise it is odd.

Second solution: every pair of numbers forms an inversion, so the total number of inversions is equal to $1+2+\ldots+(n-1)=n(n-1)/2$. To determine the parity of this number, we should know the remainder of n modulo 4, and we easily obtain the answer given above.

2. (a) Subtracting from the row 3 of the matrix the rows 1 and 2, we get a matrix with a row of zeros, hence the determinant is equal to zero.

(b) We have $\det(AA^T) = \det(A)\det(A^T) = \det(A)^2$, so $\det(A) = 0$ if and only if $\det(AA^T) = 0$.

3. (a) If P and Q are $n \times n$ -matrices, and $PQ - QP = I_n$, then

$$0 = \operatorname{tr}(PQ) - \operatorname{tr}(QP) = \operatorname{tr}(PQ - QP) = \operatorname{tr}(I_n) = n,$$

a contradiction.

(b) If P is invertible, then $Q - P^{-1}QP = I_n$, and $0 = tr(Q) - tr(P^{-1}QP) = tr(I_n) = n$, a contradiction.

4. (a) Yes, two vectors are linearly independent if they are not proportional, and these two clearly are not. (b) No, the sum of the second and the third is a multiple of the first one. (c) Yes (the matrix is invertible, so the RREF is I_3 , and vectors are linearly independent). (d) No, because the maximal number of linearly independent vectors in \mathbb{R}^3 is 3 (proved in class).

5. (a) No, because the minimal number of vectors in a complete system in \mathbb{R}^3 is 3 (proved in class). (b) No: for each of these vectors the sum of coordinates is 0, and the same will hold for every linear combination. (Alternative solution: compute the RREF and see that there is a row of zeros.) (c) Yes (the matrix is invertible, so the RREF is I₃, and vectors form a complete system). (d) Yes (easy to check that the RREF of the matrix has no zero rows so the system is complete).