MA 1111: Linear Algebra I

Selected answers/solutions to the assignment for November 2, 2018

1. (a) Inversions are only formed by n and other numbers - $\mathrm{n}-1$ in total, so the permutation is even for odd n and odd for even n .
(b) First solution: this reordering of $1, \ldots, n$ is obtained from the normal ordering as a result of consecutive exchanges of 1 with $n, 2$ with $n-1$ etc. The total number of exchanges here is $\frac{n}{2}$ for an even n and $\frac{n-1}{2}$ for an odd n. We know that exchanging two numbers changes the parity, so we need to determine the parity of $\frac{n}{2}$ for an even n and of $\frac{n-1}{2}$ for an odd n. It is easy to see that the latter parity is determined by the remainder of n modulo 4 : for $n=4 k$ or $n=4 k+1$ the permutation is even, otherwise it is odd.

Second solution: every pair of numbers forms an inversion, so the total number of inversions is equal to $1+2+\ldots+(n-1)=n(n-1) / 2$. To determine the parity of this number, we should know the remainder of n modulo 4 , and we easily obtain the answer given above.
2. (a) Subtracting from the row 3 of the matrix the rows 1 and 2 , we get a matrix with a row of zeros, hence the determinant is equal to zero.
(b) We have $\operatorname{det}\left(A A^{\top}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{\top}\right)=\operatorname{det}(\mathcal{A})^{2}$, so $\operatorname{det}(\mathcal{A})=0$ if and only if $\operatorname{det}\left(A A^{\top}\right)=0$.
3. (a) If P and Q are $n \times n$-matrices, and $P Q-Q P=I_{n}$, then

$$
0=\operatorname{tr}(P Q)-\operatorname{tr}(Q P)=\operatorname{tr}(P Q-Q P)=\operatorname{tr}\left(I_{n}\right)=n,
$$

a contradiction.
(b) If P is invertible, then $Q-P^{-1} Q P=I_{n}$, and $0=\operatorname{tr}(Q)-\operatorname{tr}\left(P^{-1} Q P\right)=\operatorname{tr}\left(I_{n}\right)=n$, a contradiction.
4. (a) Yes, two vectors are linearly independent if they are not proportional, and these two clearly are not. (b) No, the sum of the second and the third is a multiple of the first one. (c) Yes (the matrix is invertible, so the RREF is I_{3}, and vectors are linearly independent). (d) No, because the maximal number of linearly independent vectors in \mathbb{R}^{3} is 3 (proved in class).
5. (a) No, because the minimal number of vectors in a complete system in \mathbb{R}^{3} is 3 (proved in class). (b) No: for each of these vectors the sum of coordinates is 0 , and the same will hold for every linear combination. (Alternative solution: compute the RREF and see that there is a row of zeros.) (c) Yes (the matrix is invertible, so the RREF is I_{3}, and vectors form a complete system). (d) Yes (easy to check that the RREF of the matrix has no zero rows so the system is complete).

