MA 1111: Linear Algebra I

Selected answers/solutions to the assignment for November 9, 2018

1. This system is of the form $A x=0$, where $A=\left(\begin{array}{llll}2 & -4 & 1 & 1 \\ 1 & -2 & 0 & 5\end{array}\right)$. The reduced row echelon form of the matrix A is $\left(\begin{array}{cccc}1 & -2 & 0 & 5 \\ 0 & 0 & 1 & -9\end{array}\right)$, so x_{2} and x_{4} are free variables, and the general solution corresponding to the parameters $x_{2}=s, x_{4}=t$ is $\left(\begin{array}{c}2 s-5 t \\ s \\ 9 t \\ t\end{array}\right)=s\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right)+t\left(\begin{array}{c}-5 \\ 0 \\ 9 \\ 1\end{array}\right)$. Therefore we can take $v_{1}=\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $\nu_{2}=\left(\begin{array}{c}-5 \\ 0 \\ 9 \\ 1\end{array}\right)$.
2. The reduced row echelon form of this matrix is $\left(\begin{array}{cccc}1 & 0 & -1 & 1 / 3 \\ 0 & 1 & 0 & -1 / 3 \\ 0 & 0 & 0 & 0\end{array}\right)$, so x_{3} and x_{4} are free variables, and the general solution corresponding to the parameters $x_{3}=s, x_{4}=t$ is $\left(\begin{array}{c}s-\frac{1}{3} t \\ \frac{1}{3} t \\ s \\ \mathrm{t}\end{array}\right)=\mathrm{s}\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)+\mathrm{t}\left(\begin{array}{c}-\frac{1}{3} \\ \frac{1}{3} \\ 0 \\ 1\end{array}\right)$. Therefore we can take $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}-\frac{1}{3} \\ \frac{1}{3} \\ 0 \\ 1\end{array}\right)$.
3. (a) If $c=0$, there is nothing to prove. If $c \neq 0$, we can multiply our equality by c^{-1}, obtaining $0=c^{-1} \cdot 0=c^{-1}(c v)=\left(c^{-1} c\right) v=1 \cdot v=v$.
(b) If $v+x=0$, we have $-v=(-v)+0=(-v)+(v+x)=((-v)+v)+x=0+x=x$, so $x=-v$.
(c) We have $v+(-1) \cdot v=1 \cdot v+(-1) \cdot v=(1+(-1)) \cdot v=0 \cdot v=0$, so $x=(-1) \cdot v$ satisfies $v+x=0$, and by the previous question, $(-1) \cdot v=-v$.
4. (a) Yes, it is obviously closed under addition and taking scalar multiples.
(b) No (for example, 0 does not belong to U).
(c) No (for example, $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ belong to U, but their sum $\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$ does not belong to U$)$.
(d) Yes, every solution set to a homogeneous system of linear equations is a subspace.
5. (a) Yes, if $f(1)=0$ and $g(1)=0$, then $(f+g)(1)=f(1)+g(1)=0$, and $(c f)(1)=c f(1)=0$.
(b) Yes, similar to the previous one.
(c) Yes, similar to the previous one.
(d) No (for example, $t-1$ and $t-2$ belong to U, but their sum $2 t-3$ does not belong to U).
