MA 1111: Linear Algebra I

Selected answers/solutions to the assignment for November 16, 2018

1. (a) True: if $\mathbf{v}=\mathrm{c}_{1} \mathbf{v}_{1}+\ldots+\mathrm{c}_{\mathfrak{m}} \mathbf{v}_{\mathrm{m}}$, then $(-1) \cdot \mathbf{v}+\mathrm{c}_{1} \mathbf{v}_{1}+\ldots+\mathbf{c}_{\mathfrak{m}} \mathbf{v}_{\mathfrak{m}}=0$, so the vectors $\mathbf{v}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{m}}$ are linearly dependent (already the first coefficient in the linear combination is nonzero).
(b) True: if a system of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathfrak{m}}$ is linearly dependent, then $\mathfrak{c}_{1} \mathbf{v}_{1}+\ldots+\mathbf{c}_{\mathfrak{m}} \mathbf{v}_{\mathfrak{m}}=0$ for some scalars c_{1}, \ldots, c_{m}, not all of which are zero. If $c_{k} \neq 0$, we have

$$
v_{k}=\frac{-c_{1}}{c_{k}} \mathbf{v}_{1}+\ldots+\frac{-c_{k-1}}{c_{k}} \mathbf{v}_{\mathrm{k}-1}+\frac{-\mathrm{c}_{\mathrm{k}+1}}{\mathrm{c}_{\mathrm{k}}} \mathbf{v}_{\mathrm{k}+1}+\ldots+\frac{-\mathrm{c}_{\mathrm{m}}}{\mathrm{c}_{\mathrm{k}}} \mathbf{v}_{\mathrm{m}}
$$

(c) False: consider a system consisting of two vectors: $\mathbf{v} \neq 0$ and 0 . Then $0 \cdot \mathbf{v}+1 \cdot 0=0$, so these vectors are linearly dependent. However, $\mathbf{v} \neq \mathbf{c} \cdot 0$, so not every vector in the system is equal to a linear combination of other vectors.
2. We have $c_{1} e_{1}+c_{2} e_{2}=\binom{3 c_{1}+5 c_{2}}{2 c_{1}+3 c_{2}}$, so as we know from class, all the properties are related to properties of the matrix $A=\left(\begin{array}{ll}3 & 5 \\ 2 & 3\end{array}\right)$. The determinant of this matrix is nonzero, so the matrix A is invertible, and its reduced row echelon form is the identity matrix, so the vectors form a basis. Solving the system $A x=\binom{1}{-1}$, we find the coordinates $x_{1}=-8, x_{2}=5$.
3. $M_{e f}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)^{-1}\left(\begin{array}{ccc}3 & 1 & 0 \\ -1 & -1 & 2 \\ 1 & 0 & -1\end{array}\right)=\left(\begin{array}{ccc}-3 / 2 & -1 & 1 / 2 \\ 5 / 2 & 1 & -3 / 2 \\ 1 / 2 & 0 & 3 / 2\end{array}\right)$; coordinates are

$$
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)^{-1}\left(\begin{array}{c}
1 \\
7 \\
-3
\end{array}\right)=\left(\begin{array}{c}
3 / 2 \\
-9 / 2 \\
11 / 2
\end{array}\right)
$$

and

$$
\left(\begin{array}{ccc}
3 & 1 & 0 \\
-1 & -1 & 2 \\
1 & 0 & -1
\end{array}\right)^{-1}\left(\begin{array}{c}
1 \\
7 \\
-3
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
-1 / 2 \\
7 / 2
\end{array}\right)
$$

respectively.
4. (a) We have $v \times\left(w_{1}+w_{2}\right)=v \times w_{1}+v \times w_{2}$ and $v \times(\mathrm{cw})=\mathrm{c} v \times w$ by the known properties of cross products, so it is a linear operator. Also, $v \times\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}0 \\ -1 \\ -2\end{array}\right), v \times\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$, $v \times\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$, so the matrix of our operator is $\left(\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -1 \\ -2 & 1 & 0\end{array}\right)$.
(b) We have $v \cdot\left(w_{1}+w_{2}\right)=v \cdot w_{1}+v \cdot w_{2}$ and $v \cdot(\mathrm{cw})=\mathrm{cv} \cdot w$ by the known properties of dot products, so it is a linear transformation. Also, $v \cdot\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=1, v \cdot\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=2, v \cdot\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=-1$, so the matrix of our operator is $\left(\begin{array}{lll}1 & 2 & -1\end{array}\right)$.

