Solutions to this problem sheet are to be handed in after our class at 1 pm on Friday. Please attach a cover sheet with a declaration

http://tcd-ie.libguides.com/plagiarism/declaration

confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. (a) Does the straight line passing through the points $(6,8)$ and $(9,13)$ contain the point $(1,0)$? (b) Do the points $(1,1),(4,5)$, and $(9,-5)$ form a right triangle?

In the next two questions, we consider the vectors

$$
\mathbf{u}=(1,-1,1), \quad \mathbf{v}=(2,3,-1), \quad \mathbf{w}=(0,2,1)
$$

2. Compute the following products:

$$
\mathbf{u} \cdot \mathbf{v}, \quad \mathbf{v} \cdot \mathbf{w}, \quad \mathbf{v} \times \mathbf{w}, \quad \mathbf{u} \times \mathbf{w}, \quad \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}), \quad \mathbf{v} \cdot(\mathbf{u} \times \mathbf{w}) .
$$

3. Use your results from the previous question to compute (a) the area of the parallelogram determined by the vectors \mathbf{u} and \mathbf{w}; (b) the volume of the parallelepiped determined by \mathbf{u}, \mathbf{v}, and \mathbf{w}.
4. Prove that the coordinates of the point $\left(x^{\prime}, y^{\prime}\right)$ where the [counterclockwisel rotation through α about the point $(0,0)$ brings the given point (x, y) are

$$
\begin{aligned}
& x^{\prime}=x \cos \alpha-y \sin \alpha \\
& y^{\prime}=x \sin \alpha+y \cos \alpha
\end{aligned}
$$

(Hint: show that for the points $(x, y)=(1,0)$ and $(x, y)=(0,1)$ directly, and then use the fact that the vector from the origin to the point (x, y) is equal to the vector $x \cdot(1,0)+y \cdot(0,1)$.)

