Solutions to this problem sheet are to be handed in after our class at 1 pm on Friday. Please attach a cover sheet with a declaration
http://tcd-ie.libguides.com/plagiarism/declaration
confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. Find an equation for the plane (a) containing the point $(1,-1,1)$ and perpendicular to the vector $\mathbf{n}=(1,-2,1)$; (b) containing the points $(1,-1,1),(2,3,-1),(0,2,1)$. (Hint: to find a vector perpendicular to a plane, you can compute the vector product of two vectors in that plane.)
2. The system of equations

$$
\left\{\begin{array}{l}
2 x-y+4 z=1 \\
7 x+2 y+z=5
\end{array}\right.
$$

defines a line l in the 3 d space (which is the intersection of the corresponding planes). Find a parametric equation of that line.
3. The 3×5-matrix

$$
\left(\begin{array}{ccccc}
1 & 4 & 5 & 1 & 1 \\
1 & 2 & 2 & 1 & -4 \\
1 & 2 & 0 & 5 & -4
\end{array}\right)
$$

represents some system of linear equations. Write down that system of equations, and use elimination to describe its solution set.
4. How many solutions, depending on the parameters (a, b), does the following system of equations have?

$$
\left\{\begin{aligned}
x+4 a y & =1-b \\
a x+y & =b
\end{aligned}\right.
$$

