MA 1111: Linear Algebra I

Homework problems for October 5, 2018

Solutions to this problem sheet are to be handed in after our class at 1pm on Friday. Please attach a cover sheet with a declaration

```
http://tcd-ie.libguides.com/plagiarism/declaration
```

confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. For each of the following choices of matrices A and B find out which of the matrices $A+B$, $B A$, and $A B$ are defined, and compute those which are defined:
(a) $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right), B=\binom{-1}{3}$;
(b) $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 0 & 1\end{array}\right), B=\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)$;
(c) $A=\left(\begin{array}{lll}5 & 1 & 0 \\ 1 & 1 & 2\end{array}\right), B=\left(\begin{array}{ll}1 & 4 \\ 0 & 1 \\ 2 & 5\end{array}\right)$;
(d) $A=\left(\begin{array}{ll}2 & 4 \\ 1 & 1\end{array}\right), B=\left(\begin{array}{ll}2 & 4 \\ 2 & 2\end{array}\right)$.
2. Which of the following matrices are invertible? Compute inverses for them. (a) $\left(\begin{array}{ll}5 & 3 \\ 2 & 1\end{array}\right)$;
(b) $\left(\begin{array}{ll}6 & 3 \\ 2 & 1\end{array}\right) ;(\mathbf{c})\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 3 & 9\end{array}\right) ;(\mathbf{d})\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 0\end{array}\right)$.
3. (a) Show that if A and B are matrices for which both products $A B$ and $B A$ are defined, then both products $A B$ and $B A$ are square matrices (maybe of different sizes).
(b) For an $n \times \mathfrak{n}$-matrix A, its trace $\operatorname{tr}(\mathcal{A})$ is defined as the sum of diagonal elements,

$$
\operatorname{tr}(A)=A_{11}+A_{22}+\cdots+A_{n n}
$$

Show that if U is an $n \times m$-matrix, and V is an $m \times n$-matrix, then $\operatorname{tr}(U V)=\operatorname{tr}(V U)$. Explain why this does not contradict the example from class where we found two 2×2-matrices for which UV $=\mathrm{VU}$.
4. (a) Give an example of a 2×3-matrix A and a 3×2-matrix B for which $A B=I_{2}$. (Hint: in this case, there is already an example with matrices with entries entries from $\{0,1\}$).
(b) Show that there do not exist an example of a 3×2-matrix A and a 2×3-matrix B for which $A B=I_{3}$.

