MA 1111: Linear Algebra I Homework problems for October 5, 2018

Solutions to this problem sheet are to be handed in after our class at 1pm on Friday. Please attach a cover sheet with a declaration

http://tcd-ie.libguides.com/plagiarism/declaration

confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. For each of the following choices of matrices A and B find out which of the matrices A + B, BA, and AB are defined, and compute those which are defined:

(a)
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 \\ 3 \end{pmatrix};$$

(b) $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix};$
(c) $A = \begin{pmatrix} 5 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 4 \\ 0 & 1 \\ 2 & 5 \end{pmatrix};$
(d) $A = \begin{pmatrix} 2 & 4 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 \\ 2 & 2 \end{pmatrix}.$

2. Which of the following matrices are invertible? Compute inverses for them. (a) $\begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}$;

(b)
$$\begin{pmatrix} 6 & 3 \\ 2 & 1 \end{pmatrix}$$
; (c) $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 3 & 9 \end{pmatrix}$; (d) $\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix}$.

3. (a) Show that if A and B are matrices for which both products AB and BA are defined, then both products AB and BA are square matrices (maybe of different sizes).

(b) For an $n \times n$ -matrix A, its *trace* tr(A) is defined as the sum of diagonal elements,

$$tr(A) = A_{11} + A_{22} + \dots + A_{nn}.$$

Show that if U is an $n \times m$ -matrix, and V is an $m \times n$ -matrix, then tr(UV) = tr(VU). Explain why this does not contradict the example from class where we found two 2×2 -matrices for which $UV \neq VU$.

4. (a) Give an example of a 2×3 -matrix A and a 3×2 -matrix B for which $AB = I_2$. (*Hint*: in this case, there is already an example with matrices with entries from $\{0, 1\}$).

(b) Show that there do not exist an example of a 3×2 -matrix A and a 2×3 -matrix B for which $AB = I_3$.