MA 1111: Linear Algebra I
 Homework problems for October 12, 2018

Solutions to this problem sheet are to be handed in after our class at 1 pm on Friday. Please attach a cover sheet with a declaration

```
http://tcd-ie.libguides.com/plagiarism/declaration
```

confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. For the following permutations determine whether they are odd or even:
(a) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 2 & 7 & 6 & 5 & 1\end{array}\right) ;(\mathbf{b})\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 8 & 2 & 3 & 7 & 6 & 5 & 1\end{array}\right) ;(\mathbf{c})\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 8 & 2 & 5 & 6 & 7 & 3 & 1\end{array}\right)$.
2. List all $\mathfrak{i}, \mathfrak{j}, \mathrm{k}, \mathrm{l}$ for which the permutation $\left(\begin{array}{cccccc}5 & 2 & k & 3 & 6 & 1 \\ l & 1 & 3 & i & 6 & j\end{array}\right)$ is even.
3. Compute the determinant of the matrix (a) $\left(\begin{array}{ccc}1 & 0 & -2 \\ 1 & 1 & 3 \\ 4 & 3 & 1\end{array}\right)$; (b) $\left(\begin{array}{cccc}1 & 1 & -2 & -1 \\ 2 & 0 & 3 & -1 \\ 4 & 2 & 3 & 1 \\ 3 & 0 & 0 & 1\end{array}\right)$.
4. Compute the determinant (a) of the matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right) ;(\mathbf{b})$ of the matrix $\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4\end{array}\right)$; (c) of the $\mathfrak{n} \times \mathfrak{n}$ matrix A for which $a_{i j}=\min (i, j)$. (The entry in row i and column j is equal to the minimum of \mathfrak{i} and \mathfrak{j}, like in the two previous questions for $n=3$, 4.)
5. For which values of c does \mathcal{A} fail to be invertible:
(a) $A=\left(\begin{array}{cc}2-c & -1 \\ -1 & 2-c\end{array}\right)$; (b) $A=\left(\begin{array}{ccc}2 & c-1 & 1 \\ 1+c & 2 & 3 \\ 3 & 4 c & -1\end{array}\right)$.
