MA 1111: Linear Algebra I
 Homework problems for October 19, 2018

Solutions to this problem sheet are to be handed in after our class at 1 pm on Friday. Please attach a cover sheet with a declaration

```
http://tcd-ie.libguides.com/plagiarism/declaration
```

confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. For the matrix

$$
A=\left(\begin{array}{lll}
2 & 4 & 1 \\
1 & 3 & 3 \\
3 & 1 & 5
\end{array}\right)
$$

compute (a) all its minors and (b) all its cofactors; evaluate $\operatorname{det}(A)$ using the cofactor expansion along (\mathbf{c}) the first row, (\mathbf{d}) the first column, (\mathbf{e}) the second row, (\mathbf{f}) the second column, (\mathbf{g}) the third row, (\mathbf{h}) the third column.
2. For the matrix from the previous question, (a) write down the adjugate matrix and use it to compute $A^{-1} ;(\mathbf{b})$ use the Cramer's formula to solve the system $A x=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$.
3. Assume that for two square matrices A and B of the same size the matrix $A B$ is invertible. (a) Show that B is invertible. (Hint: if B is not invertible, the system $B x=0$ has a nontrivial solution.) (b) Show that A is invertible.
4. Let M and N be square matrices, and suppose that M is invertible.
(a) Show that $\operatorname{tr}\left(M^{-1} N M\right)=\operatorname{tr}(N)$. (Hint: use the property $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.)
(b) Show that $\operatorname{det}\left(M^{-1} N M\right)=\operatorname{det}(N)$.
5. Prove that for every 2×2-matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we have

$$
A^{2}-\operatorname{tr}(A) \cdot A+\operatorname{det}(A) \cdot I_{2}=0
$$

