Solutions to this problem sheet are to be handed in after our class at 1 pm on Friday. Please attach a cover sheet with a declaration

```
http://tcd-ie.libguides.com/plagiarism/declaration
```

confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. For the following permutations determine whether they are odd or even (the answer depends on n):
(a) $\left(\begin{array}{cccccc}1 & 2 & 3 & \ldots & n-1 & n \\ n & 1 & 2 & \ldots & n-2 & n-1\end{array}\right)$;
(b) $\left(\begin{array}{ccccccc}1 & 2 & 3 & \ldots & n-2 & n-1 & n \\ n & n-1 & n-2 & \ldots & 3 & 2 & 1\end{array}\right)$.
2. (a) Without directly evaluating the determinant, show that for each choice of α, β, and γ the matrix

$$
\left(\begin{array}{ccc}
\cos ^{2} \alpha & \cos ^{2} \beta & \cos ^{2} \gamma \\
\sin ^{2} \alpha & \sin ^{2} \beta & \sin ^{2} \gamma \\
1 & 1 & 1
\end{array}\right)
$$

is not invertible.
(b) Let A be a square matrix. Prove that A is invertible if and only if $A A^{\top}$ is invertible.
3. Using the property $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ proved in an earlier homework, prove that
(a) there do not exist $n \times n$-matrices P and Q such that $P Q-Q P=I_{n}$,
(b) if for two $n \times n$-matrices P and Q we have $P Q-Q P=P$, then the matrix P is not invertible.
4. For each of the following systems of vectors in \mathbb{R}^{3}, find out whether it is linearly independent:
(a) $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right) ;$
(b) $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right)$;
(c) $\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right)$;
(d) $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
5. For each of the following systems of vectors in \mathbb{R}^{3}, find out whether it is complete:
(a) $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right) ;(\mathbf{b})\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right)$;
(c) $\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right) ;(\mathbf{d})\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right),\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

