MA 1111: Linear Algebra I Homework problems for November 2, 2018

Solutions to this problem sheet are to be handed in after our class at 1pm on Friday. Please attach a cover sheet with a declaration

http://tcd-ie.libguides.com/plagiarism/declaration

confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. For the following permutations determine whether they are odd or even (the answer depends on n):

(a) $\begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ n & 1 & 2 & \dots & n-2 & n-1 \end{pmatrix}$; (b) $\begin{pmatrix} 1 & 2 & 3 & \dots & n-2 & n-1 & n \\ n & n-1 & n-2 & \dots & 3 & 2 & 1 \end{pmatrix}$.

2. (a) Without directly evaluating the determinant, show that for each choice of α , β , and γ the matrix

$$\begin{pmatrix} \cos^2 \alpha & \cos^2 \beta & \cos^2 \gamma \\ \sin^2 \alpha & \sin^2 \beta & \sin^2 \gamma \\ 1 & 1 & 1 \end{pmatrix}$$

is not invertible.

(b) Let A be a square matrix. Prove that A is invertible if and only if AA^{T} is invertible.

3. Using the property tr(AB) = tr(BA) proved in an earlier homework, prove that

(a) there do not exist $n \times n$ -matrices P and Q such that $PQ - QP = I_n$,

(b) if for two $n \times n$ -matrices P and Q we have PQ - QP = P, then the matrix P is not invertible.

4. For each of the following systems of vectors in \mathbb{R}^3 , find out whether it is linearly independent:

$$(\mathbf{a}) \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix}; (\mathbf{b}) \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 3\\-2\\-1 \end{pmatrix}; \\ (\mathbf{c}) \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 3\\-2\\-1 \end{pmatrix}; (\mathbf{d}) \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 3\\-2\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

5. For each of the following systems of vectors in \mathbb{R}^3 , find out whether it is complete:

(a)
$$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$; (b) $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$;
(c) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$; (d) $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.