Solutions to this problem sheet are to be handed in after our class at 1 pm on Friday. Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. For the system

$$
\left\{\begin{array}{l}
2 x_{1}-4 x_{2}+x_{3}+x_{4}=0 \\
x_{1}-2 x_{2}+5 x_{4}=0
\end{array}\right.
$$

find some vectors $v_{1}, \ldots, v_{\mathrm{k}}$ such that the solution set to this system equals $\operatorname{span}\left(v_{1}, \ldots, v_{\mathrm{k}}\right)$.
2. For the matrix $A=\left(\begin{array}{cccc}1 & -2 & -1 & 1 \\ 2 & -1 & -2 & 1 \\ 0 & 6 & 0 & -2\end{array}\right)$, find some vectors v_{1}, \ldots, v_{k} such that the solution set to the system $A x=0$ equals $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$.
3. (a) Prove that if V is a vector space, $v \in \mathrm{~V}, \mathrm{c} \in \mathbb{R}$, and $\mathrm{c} \cdot v=0$, then $\mathrm{c}=0$ or $v=0$.
(b) Show that for every vector space V and every element $\mathbf{v} \in \mathrm{V}$ the opposite element is unique: if $\mathbf{v}+\mathbf{x}=0$, then $\mathbf{x}=-\mathbf{v}$.
(c) Show that for every vector space V and every element $\mathbf{v} \in \mathrm{V}$ we have $(-1) \cdot \mathbf{v}=-\mathbf{v}$.
4. Which of the following subsets U of \mathbb{R}^{3} are subspaces? Explain your answers.
(a) $\mathrm{U}=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): 3 x-5 y+z=0\right\}$.
(b) $\mathrm{u}=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): 2 x-y+z=1\right\}$.
(c) $\mathrm{U}=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): \mathrm{x}^{2}-\mathrm{y}^{2}+z^{2}=0\right\}$.
(d) U is the solution set to the system of linear equations $A \mathbf{x}=0$, where $\mathrm{A}=\left(\begin{array}{ccc}3 & 4 & 61 \\ 112 & -1 & 34 \\ 109 & -5 & -27\end{array}\right)$.
5. Which of the following subsets of the vector space of all polynomials in one variable x are subspaces? Explain your answers.
(a) $\mathrm{U}=\{\mathrm{f}(\mathrm{x}): \mathrm{f}(1)=0\}$;
(b) $\mathrm{U}=\{\mathrm{f}(\mathrm{x}): \mathrm{f}(1)=\mathrm{f}(2)=0\}$;
(c) $\mathrm{U}=\{\mathrm{f}(\mathrm{x}): \mathrm{f}(1)+\mathrm{f}(2)=0\}$;
(d) $U=\{f(x): f(1) \cdot f(2)=0\}$.

