Solutions to this problem sheet are to be handed in after our class at 1 pm on Friday. Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. True or false (prove true statements and give counterexamples to false ones):
(a) if a system of vectors in some vector space contains a vector which is equal to a linear combination of other vectors from the same system, then these vectors are linearly dependent;
(b) if a system of vectors in some vector space is linearly dependent, then it contains a vector which is equal to a linear combination of other vectors from this system;
(c) if a system of vectors in some vector space is linearly dependent, then every vector from this system is equal to a linear combination of other vectors from this system.
2. Show that the vectors $e_{1}=\binom{3}{2}, e_{2}=\binom{5}{3}$ form a basis of \mathbb{R}^{2}, and compute coordinates of $\mathbf{v}=\binom{1}{-1}$ relative to that basis.
3. For $V=\mathbb{R}^{3}$, find the transition matrix $M_{e f}$ from the basis $e_{1}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), e_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), e_{3}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ to the basis $f_{1}=\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right), f_{2}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right), f_{3}=\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)$, and find the coordinates of the vector $\left(\begin{array}{c}1 \\ 7 \\ -3\end{array}\right)$ in \mathbb{R}^{3} relative to each of the bases e_{1}, e_{2}, e_{3} and f_{1}, f_{2}, f_{3}.
4. Let $v=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right) \in \mathbb{R}^{3}$.
(a) Show that the function from \mathbb{R}^{3} to \mathbb{R}^{3} given by

$$
w \mapsto v \times w
$$

is a linear operator, and find its matrix relative to the basis of standard unit vectors.
(b) Show that the function from \mathbb{R}^{3} to \mathbb{R}^{1} given by

$$
w \mapsto v \cdot w
$$

is a linear transformation, and find its matrix relative to the bases of standard unit vectors in \mathbb{R}^{3} and \mathbb{R}^{1}.

