MA 1111: Linear Algebra I Homework problems for November 23, 2018

Solutions to this problem sheet are to be handed in after our class at 1pm on Friday. Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. The (counterclockwise) rotation through 90° around the origin is a linear operator from \mathbb{R}^2 to \mathbb{R}^2 . Write down its matrix relative to the basis (a) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$; (b) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

2. The matrix of a linear operator $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3$ is (relative to the basis of standard unit vectors) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Compute its matrix in the basis (a) $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$; (b) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. **3.** A sequence b_0, b_1, \ldots is defined by $b_0 = 0, b_1 = 1, b_{n+1} = 3b_n - b_{n-1}$. (a) Show that that $\begin{pmatrix} 0 & 1 \\ -1 & 3 \end{pmatrix}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b_n \\ b_{n+1} \end{pmatrix}$. (b) Find eigenvalues and eigenvectors of $\begin{pmatrix} 0 & 1 \\ -1 & 3 \end{pmatrix}$ and use them to obtain an explicit formula for b_n .

4. Determine eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$. Does there exist a change of coordinates making this matrix diagonal? Why?

5. Assume that for a 2×2 -matrix A we have $A^3 = 0$. Show that in that case we already have $A^2 = 0$. (*Hint*: one useful property you might want to use is $A^2 - tr(A) \cdot A + det(A) \cdot I_2 = 0$ proved in Homework 5.)