Solutions to this problem sheet are to be handed in after our class at 1 pm on Friday. Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. The (counterclockwise) rotation through 90° around the origin is a linear operator from \mathbb{R}^{2} to \mathbb{R}^{2}. Write down its matrix relative to the basis $(\mathbf{a})\binom{1}{0},\binom{0}{1} ;(\mathbf{b})\binom{1}{0},\binom{1}{1}$.
2. The matrix of a linear operator $\mathcal{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is (relative to the basis of standard unit vectors $)\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. Compute its matrix in the basis $(\mathbf{a})\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right) ;(\mathbf{b})\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.
3. A sequence b_{0}, b_{1}, \ldots is defined by $b_{0}=0, b_{1}=1, b_{n+1}=3 b_{n}-b_{n-1}$.
(a) Show that that $\left(\begin{array}{cc}0 & 1 \\ -1 & 3\end{array}\right)^{n}\binom{0}{1}=\binom{b_{n}}{b_{n+1}}$.
(b) Find eigenvalues and eigenvectors of $\left(\begin{array}{cc}0 & 1 \\ -1 & 3\end{array}\right)$ and use them to obtain an explicit formula for b_{n}.
4. Determine eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 1\end{array}\right)$. Does there exist a change of coordinates making this matrix diagonal? Why?
5. Assume that for a 2×2-matrix A we have $A^{3}=0$. Show that in that case we already have $A^{2}=0$. (Hint: one useful property you might want to use is $A^{2}-\operatorname{tr}(A) \cdot A+\operatorname{det}(A) \cdot I_{2}=0$ proved in Homework 5.)
