# 1111: Linear Algebra I 

Dr. Vladimir Dotsenko (Vlad)

Lecture 11

## Previously on...

For an $n \times n$-matrix $A$ with entries $a_{i j}$, we denote by $A^{i j}$ the $i, j$-minor of $A$, that is the determinant of the $(n-1) \times(n-1)$-matrix obtained from $A$ by removing the $i$-th row and the $j$-th column. For example, let us
consider the matrix $A=\left(\begin{array}{ccc}1 & 3 & 0 \\ 2 & 1 & -2 \\ 0 & 1 & 1\end{array}\right)$. Then $A^{11}=3, A^{12}=2, A^{13}=2$, $A^{21}=3, A^{22}=1, A^{23}=1, A^{31}=-6, A^{32}=-2, A^{33}=-5$.
Cofactors are "minors with signs": for the given matrix $A$, its cofactors $C^{i j}$ are defined by the formula $C^{i j}=(-1)^{i+j} A^{i j}$.
In simple words, the extra signs follow a chessboard pattern: we put +1 in the top left corner, and then keep changing signs once we cross borders between rows / columns.
For example, for the matrix $A=\left(\begin{array}{ccc}1 & 3 & 0 \\ 2 & 1 & -2 \\ 0 & 1 & 1\end{array}\right)$, we have $C^{11}=3$,
$C^{12}=-2, C^{13}=2, C^{21}=-3, C^{22}=1, C^{23}=-1, C^{31}=-6, C^{32}=2$,
$C^{33}=-5$.

## Row expansion of the determinant

Our next goal is to prove the following formula:

$$
\operatorname{det}(A)=a_{i 1} c^{i 1}+a_{i 2} c^{i 2}+\cdots+a_{i n} c^{i n},
$$

in other words, if we multiply each element of the $i$-th row of $A$ by its cofactor and add results, the number we obtain is equal to $\operatorname{det}(A)$. Let us first handle the case $i=1$. In this case, once we write the corresponding minors with signs, the formula reads

$$
\operatorname{det}(A)=a_{11} A^{11}-a_{12} A^{12}+\cdots+(-1)^{n+1} a_{1 n} A^{1 n} .
$$

Let us examine the formula for $\operatorname{det}(A)$. It is a sum of terms corresponding to pick $n$ elements representing each row and each column of $A$. In particular, it involves picking an element from the first row. This can be one of the elements $a_{11}, a_{12}, \ldots, a_{1 n}$. What remains, after we picked the element $a_{1 k}$, is to pick other elements; now we have to avoid the row 1 and the column $k$. This means that the elements we need to pick are precisely those involved in the determinant $A^{1 k}$, and we just need to check that the signs match.

## Row expansion of the determinant

In fact, it is quite easy to keep track of all signs. The column $\binom{1}{k}$ in the two-row notation does not add inversions in the first row, and adds $k-1$ inversions in the second row, since $k$ appears before $1,2, \ldots, k-1$. This shows that the signs indeed have that mismatch $(-1)^{k-1}=(-1)^{k+1}$, as we claim.

Note that the case of arbitrary $i$ is not difficult. We can just reduce it to the case of $i=1$ by performing $i-1$ row swaps. This multiplies the determinant by $(-1)^{i-1}$, which matches precisely the signs in cofactors in the formula

$$
\operatorname{det}(A)=a_{i 1} C^{i 1}+a_{i 2} C^{i 2}+\cdots+a_{i n} C^{i n}
$$

## "Wrong row expansion"

In fact, another similar formula also holds: for $i \neq j$, we have

$$
a_{i 1} C^{j 1}+a_{i 2} C^{j 2}+\cdots+a_{i n} C^{j n}=0 .
$$

It follows instantly from what we already proved: take the matrix $A^{\prime}$ which is obtained from $A$ by replacing the $j$-th row by a copy of the $i$-th row. Then the left hand side is just the $j$-th row expansion of $\operatorname{det}\left(A^{\prime}\right)$, and it remains to notice that $\operatorname{det}\left(A^{\prime}\right)=0$ because this matrix has two equal rows.

These results altogether can be written like this:

$$
a_{i 1} C^{j 1}+a_{i 2} C^{j 2}+\cdots+a_{i n} C^{j n}=\operatorname{det}(A) \delta_{i}^{j} .
$$

Here $\delta_{i}^{j}$ is the Kronecker symbol; it is equal to 1 for $i=j$ and is equal to zero otherwise. In matrix notation, $A \cdot C^{T}=\operatorname{det}(A) \cdot I_{n}$. (Note that here we have a product of matrices in the first case, and the product of the matrix $I_{n}$ and the scalar $\operatorname{det}(A)$ in the second case).

## AdJugate matrix

The transpose of cofactor matrix $C=\left(C^{i j}\right)$ is called the adjugate matrix of the matrix $A$, and is denoted $\operatorname{adj}(A)$. (Historically it was called the adjoint matrix, but now that term is used for something else). For
example, for the matrix $A=\left(\begin{array}{ccc}1 & 3 & 0 \\ 2 & 1 & -2 \\ 0 & 1 & 1\end{array}\right)$ we have
$C=\left(\begin{array}{ccc}3 & -2 & 2 \\ -3 & 1 & -1 \\ -6 & 2 & -5\end{array}\right)$, and $\operatorname{adj}(A)=\left(\begin{array}{ccc}3 & -3 & -6 \\ -2 & 1 & 2 \\ 2 & -1 & -5\end{array}\right)$.
We already proved one half of the following result:
Theorem. For each $n \times n$-matrix $A$, we have

$$
A \cdot \operatorname{adj}(A)=\operatorname{adj}(A) \cdot A=\operatorname{det}(A) \cdot I_{n} .
$$

## Adjugate matrix

Theorem. For each $n \times n$-matrix $A$, we have

$$
A \cdot \operatorname{adj}(A)=\operatorname{adj}(A) \cdot A=\operatorname{det}(A) \cdot I_{n} .
$$

The other half is proved by taking transposes: from what we already proved, we have $A^{T} \cdot C=\operatorname{det}\left(A^{T}\right) \cdot I_{n}$, because the cofactor matrix of $A^{T}$ is $C^{T}$. Now, taking transposes, and using $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$, we see that $C^{T} \cdot A=\left(A^{T} \cdot C\right)^{T}=\left(\operatorname{det}(A) \cdot I_{n}\right)^{T}=\operatorname{det}(A) \cdot I_{n}$.

Similarly to how the first half of this theorem encodes row expansion for determinants, the second half encodes the similar column expansion: if you multiply each element of the $i$-th column by its cofactor and add results, you get the determinant.

## A CLOSED FORMULA FOR THE INVERSE MATRIX

Theorem. Suppose that $\operatorname{det}(A) \neq 0$. Then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

Proof. Indeed, take the formula $A \cdot \operatorname{adj}(A)=\operatorname{adj}(A) \cdot A=\operatorname{det}(A) \cdot I_{n}$, and divide by $\operatorname{det}(A)$.
This theorem shows that not only a matrix is invertible when the determinant is not equal to zero, but also that you can compute the inverse by doing exactly one division; all other operations are addition, subtraction, and multiplication.

