
1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 13

Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 13 1 / 1



Previously on. . .

Let x1, . . . , xn be scalars. The Vandermonde determinant V (x1, . . . , xn) is
the determinant of the matrix

1 1 1 . . . 1
x1 x2 x3 . . . xn
x21 x22 x23 . . . x2n
...

...
...

. . .
...

xn−1
1 xn−1

2 xn−1
3 . . . xn−1

n

 .

Theorem. We have

V (x1, . . . , xn) =

(x2 − x1)(x3 − x2)(x3 − x1) · · · (xn − xn−1) =
∏
i<j

(xj − xi ).
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The Vandermonde determinant

Theorem. We have

V (x1, . . . , xn) =

(x2 − x1)(x3 − x2)(x3 − x1) · · · (xn − xn−1) =
∏
i<j

(xj − xi ).

Proof: Let us subtract, for each i = n− 1, n− 2, . . . , 1, the row i times x1
from the row i + 1. Combining rows does not change the determinant, so
we conclude that V (x1, . . . , xn) is equal to the determinant of the matrix

1 1 1 . . . 1
0 x2 − x1 x3 − x1 . . . xn − x1
0 x22 − x1x2 x23 − x1x3 . . . x2n − x1xn
...

...
...

. . .
...

0 xn−1
2 − x1x

n−2
2 xn−1

3 − x1x
n−2
3 . . . xn−1

n − x1x
n−2
n

 .
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The Vandermonde determinant

Let us expand the determinant

det


1 1 1 . . . 1
0 x2 − x1 x3 − x1 . . . xn − x1
0 x22 − x1x2 x23 − x1x3 . . . x2n − x1xn
...

...
...

. . .
...

0 xn−1
2 − x1x

n−2
2 xn−1

3 − x1x
n−2
3 . . . xn−1

n − x1x
n−2
n


along the first column, the result is

det


x2 − x1 x3 − x1 . . . xn − x1
x22 − x1x2 x23 − x1x3 . . . x2n − x1xn

...
...

. . .
...

xn−1
2 − x1x

n−2
2 xn−1

3 − x1x
n−2
3 . . . xn−1

n − x1x
n−2
n

 .
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The Vandermonde determinant

We note that the k-th column of the determinant

det


x2 − x1 x3 − x1 . . . xn − x1
x22 − x1x2 x23 − x1x3 . . . x2n − x1xn

...
...

. . .
...

xn−1
2 − x1x

n−2
2 xn−1

3 − x1x
n−2
3 . . . xn−1

n − x1x
n−2
n


is divisible by xk+1 − x1, so it is equal to

(x2 − x1)(x3 − x1) · · · (xn − x1) det


1 1 . . . 1
x2 x3 . . . xn
...

...
. . .

...

xn−2
2 xn−2

3 . . . xn−2
n

 ,

so we encounter a smaller Vandermonde determinant, and can proceed by
induction.
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The Vandermonde determinant

An important consequence: the Vandermonde determinant is not equal to
zero if and only if x1, . . . , xn are all distinct.

Theorem. For each n distinct numbers x1, . . . , xn, and each choice of
a1,. . . , an, there exists a unique polynomial
f (x) = c0 + c1x + · · ·+ cn−1x

n−1 of degree at most n − 1 such that
f (x1) = a1, . . . , f (xn) = an.

Proof: Let us figure out what conditions are imposed on the coefficients
c0, . . . , cn−1: 

c0 + c1x1 + · · ·+ cn−1x
n−1
1 = a1,

c0 + c1x2 + · · ·+ cn−1x
n−1
2 = a2,

. . . ,

c0 + c1xn + · · ·+ cn−1x
n−1
n = an .

The matrix of this system is the transpose of the Vandermonde matrix!
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The Vandermonde determinant

We conclude that the conditions we wish to observe are of the form

Ax = b, where b =


a1
a2
...
an

 and det(A) = V (x1 . . . , xn). Since x1, . . . , xn

are distinct, det(A) 6= 0, and the system has exactly one solution for any
choice of the vector b.

Remark. In fact, one can write the formula for f (x) directly. The
following neat formula for f (x) is called the Lagrange interpolation
formula:

f (x) =
n∑

i=1

ai
(x − x1) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
.

The conditions f (xi ) = ai are easily checked by inspection.
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The coordinate vector space Rn

We already used vectors in n dimensions when talking about systems of
linear equations. However, we shall now introduce some further notions
and see how those notions may be applied.

Recall that the coordinate vector space Rn consists of all columns of
height n with real entries, which we refer to as vectors.

Let v1, . . . , vk be vectors, and let c1, . . . , ck be real numbers. The linear
combination of vectors v1, . . . , vk with coefficients c1, . . . , ck is, quite
unsurprisingly, the vector c1v1 + · · ·+ ckvk .

The vectors v1, . . . , vk are said to be linearly independent if the only linear
combination of this vector which is equal to the zero vector is the
combination where all coefficients are equal to 0. Otherwise those vectors
are said to be linearly dependent.

The vectors v1, . . . , vk are said to span Rn, or to form a complete set of
vectors, if every vector can be written as some linear combination of those
vectors.
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Linear independence and span: examples

The vectors

(
1
0

)
and

(
3
0

)
are linearly dependent:

(−3)

(
1
0

)
+

(
3
0

)
=

(
0
0

)
.

The vectors

(
1
0

)
and

(
1
1

)
are linearly independent: if

c1

(
1
0

)
+ c2

(
1
1

)
=

(
0
0

)
, we have c1 + c2 = 0 and c2 = 0, so both

coefficients in the linear combination are zero.
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Linear independence and span: examples

The vector

(
1
1

)
does not span R2: any linear combination in this case is

just a scalar multiple, so we can only get vectors with equal coordinates.

The vectors

(
1
0

)
and

(
1
1

)
span R2: if we look, given a1, a2, for c1, c2

such that c1

(
1
0

)
+ c2

(
1
1

)
=

(
a1
a2

)
, we have c1 + c2 = a1 and c2 = a2,

which can be easily solved for c1, c2, so any vector can be written as a
combination of these.
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Linear independence and span: examples

If a system of vectors contains the zero vector, these vectors may not be
linearly independent, since it is enough to take the zero vector with a
nonzero coefficient.

If a system of vectors contains two equal vectors, or two proportional
vectors, these vectors may not be linearly independent. More generally,
several vectors are linearly dependent if and only if one of those vectors
can be represented as a linear combination of others. (Exercise: prove that
last statement).

The standard unit vectors e1, . . . , en are linearly independent; they also
span Rn.

If the given vectors are linearly independent, then removing some of them
keeps them linearly independent. If the given vectors span Rn, then
throwing in some extra vectors does not destroy this property.
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Linear combinations and systems of linear
equations

Let us make one very important observation:

For an n × k-matrix A and a vector x of height k , the product
Ax is the linear combination of columns of A whose coefficients

are the coordinates of the vector x . If x =


x1
x2
...
xk

, and

A = (v1 | v2 | · · · | vk), then Ax = x1v1 + · · ·+ xkvk .

We already utilised that when working with systems of linear equations.
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Linear independence and span

Let v1, . . . , vk be vectors in Rn. Consider the n × k-matrix A whose
columns are these vectors.

Clearly, the vectors v1, . . . , vk are linearly independent if and only if the
system of equations Ax = 0 has only the trivial solution. This happens if
and only if there are no free variables, so the reduced row echelon form of
A has a pivot in every column.

Clearly, the vectors v1, . . . , vk span Rn if and only if the system of
equations Ax = b has solutions for every b. This happens if and only if the
reduced row echelon form of A has a pivot in every row. (Indeed,
otherwise for some b we shall have the equation 0 = 1).

In particular, if v1, . . . , vk are linearly independent in Rn, then k ≤ n
(there is a pivot in every column of A, and at most one pivot in every
row), and if v1, . . . , vk span Rn, then k ≥ n (there is a pivot in every row,
and at most one pivot in every column).
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Bases of Rn

We say that vectors v1, . . . , vk in Rn form a basis if they are linearly
independent and they span Rn.

Theorem. Every basis of Rn consists of exactly n elements.

Proof. We know that if v1, . . . , vk are linearly independent, then k ≤ n,
and if v1, . . . , vk span Rn, then k ≥ n. Since both properties are satisfied,
we must have k = n.

Let v1, . . . , vn be vectors in Rn. Consider the n × n-matrix A whose
columns are these vectors. Our previous results immediately show that
v1, . . . , vn form a basis if and only if the matrix A is invertible (for which
we had many equivalent conditions earlier).
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