1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 14

Previously on...

The vectors v_{1}, \ldots, v_{k} are said to be linearly independent if the only linear combination of this vector which is equal to the zero vector is the combination where all coefficients are equal to 0 . Otherwise those vectors are said to be linearly dependent.

The vectors v_{1}, \ldots, v_{k} are said to span \mathbb{R}^{n}, or to form a complete set of vectors, if every vector can be written as some linear combination of those vectors.

We say that vectors v_{1}, \ldots, v_{k} in \mathbb{R}^{n} form a basis if they are linearly independent and they span \mathbb{R}^{n}.

Previously on...

Let v_{1}, \ldots, v_{k} be vectors in \mathbb{R}^{n}. Consider the $n \times k$-matrix A whose columns are these vectors.

These vectors are linearly independent if and only if the reduced row echelon form of A has a pivot in every column.

These vectors span \mathbb{R}^{n} if and only if the reduced row echelon form of A has a pivot in every row.

These vectors form a basis if and only if the reduced row echelon form of A is I_{n}.

Coordinates

Let e_{1}, \ldots, e_{n} be a basis of V. For a vector v, the scalars c_{1}, \ldots, c_{n} for which

$$
v=c_{1} e_{1}+c_{2} e_{2}+\cdots+c_{n} e_{n}
$$

are called the coordinates of v with respect to the basis e_{1}, \ldots, e_{n}.
This definition makes sense: each vector has (unique) coordinates. Existence follows from the spanning property of a basis, uniqueness from the linear independence.
Let us take the vectors $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{1}{1}$, as the last time. These vectors form a basis of \mathbb{R}^{2}. The coordinates of the vector $v=\binom{0}{1}$ with respect to this basis are given by the column $v_{e}=\binom{-1}{1}$, because $\binom{0}{1}=-\binom{1}{0}+\binom{1}{1}$.

Subspaces of \mathbb{R}^{n}

A non-empty subset U of \mathbb{R}^{n} is called a subspace if the following properties are satisfied:

- whenever $v, w \in U$, we have $v+w \in U$;
- whenever $v \in U$, we have $c \cdot v \in U$ for every scalar c.

Of course, this implies that every linear combination of several vectors in U is again in U.

Exercise: show that the zero vector is contained in any subspace.
Let us give some examples. Of course, there are two very trivial examples: $U=\mathbb{R}^{n}$ and $U=\{0\}$.

Example 1: The line $y=x$ in \mathbb{R}^{2} is another example, since our basic operations can only create vectors with equal coordinates.

Example 2: Any line or 2D plane containing the origin in \mathbb{R}^{3} would also give an example, and these give a general intuition of what the word "subspace" should make one think of.

SUBSPACES OF \mathbb{R}^{n}

A non-empty subset U of \mathbb{R}^{n} is called a subspace if the following properties are satisfied:

- whenever $v, w \in U$, we have $v+w \in U$;
- whenever $v \in U$, we have $c \cdot v \in U$ for every scalar c.

Non-example 1: Consider all vectors $v=\binom{x}{y}$ in \mathbb{R}^{2} for which
$x=y=0$ or $x \neq y$. The second property is satisfied but the first one fails
since $\binom{1}{0}+\binom{0}{1}=\binom{1}{1}$.
Non-example 2: Consider all vectors with both integer coordinates in \mathbb{R}^{2}. The first property is satisfied, but the second one fails since
$\frac{1}{2}\binom{1}{0}=\binom{\frac{1}{2}}{0}$.

SUBSPACES OF \mathbb{R}^{n} : TWO MAIN EXAMPLES

Let A be an $m \times n$-matrix. Then the solution set to the homogeneous system of linear equations $A x=0$ is a subspace of \mathbb{R}^{n}. Indeed, it is non-empty because it contains $x=0$. We also see that if $A v=0$ and $A w=0$, then $A(v+w)=A v+A w=0$, and similarly if $A v=0$, then $A(c \cdot v)=c \cdot A v=0$.
Let v_{1}, \ldots, v_{k} be some given vectors in \mathbb{R}^{n}. Their linear span $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ is the set of all possible linear combinations $c_{1} v_{1}+\ldots+c_{k} v_{k}$. The linear span of $k \geq 1$ vectors is a subspace of \mathbb{R}^{n}. Indeed, it is manifestly non-empty (contains the zero vector), and closed under sums and scalar multiples.
The example of the line $y=x$ from the previous slide fits into both contexts. First of all, it is the solution set to the system of equations $A \mathbf{x}=0$, where $A=\left(\begin{array}{ll}1 & -1\end{array}\right)$, and $\mathbf{x}=\binom{x}{y}$. Second, it is the linear span of the vector $v=\binom{1}{1}$. We shall see that it is a general phenomenon: these two descriptions are equivalent.

SUBSPACES OF \mathbb{R}^{n} : TWO MAIN EXAMPLES

Consider the matrix $A=\left(\begin{array}{cccc}1 & -2 & 1 & 0 \\ 3 & -5 & 3 & -1\end{array}\right)$, and the system of equations $A x=0$. The reduced row echelon form of this matrix is $\left(\begin{array}{cccc}1 & 0 & 1 & -2 \\ 0 & 1 & 0 & -1\end{array}\right)$, so the free unknowns are x_{3} and x_{4}. Setting $x_{3}=s, x_{4}=t$, we obtain the solution $\left(\begin{array}{c}-s+2 t \\ t \\ s \\ t\end{array}\right)$, which we can represent as $s\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right)+t\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 1\end{array}\right)$. We conclude that the solution set to the system of equations is the linear span of the vectors $v_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 1\end{array}\right)$.

SUBSPACES OF \mathbb{R}^{n} : TWO MAIN EXAMPLES

Let us implement this approach in general. Suppose A is an $m \times n$-matrix. As we know, to describe the solution set for $A x=0$ we bring A to its reduced row echelon form, and use free unknowns as parameters. Let $x_{i_{1}}$, $\ldots, x_{i k}$ be free unknowns. For each $j=1, \ldots, k$, let us define the vector v_{j} to be the solution obtained by putting the j-th free unknown to be equal to 1 , and all others to be equal to zero.

Note that the solution that corresponds to arbitrary values $x_{i_{1}}=t_{1}, \ldots$, $x_{i_{k}}=t_{k}$ is the linear combination $t_{1} v_{1}+\cdots+t_{k} v_{k}$. Therefore the solution set of $A x=0$ is the linear span of v_{1}, \ldots, v_{k}.

SUBSPACES OF \mathbb{R}^{n} : TWO MAIN EXAMPLES

In fact the solution vectors v_{1}, \ldots, v_{k} we just constructed linearly independent.

Indeed, the linear combination $t_{1} v_{1}+\cdots+t_{k} v_{k}$ has t_{i} in the place of i-th free unknown, so if this combination is equal to zero, then all coefficients must be equal to zero.

All in all, it is sensible to say that these vectors form a basis in the subspace of solutions: every vector can be obtained as their linear combination, and they are linearly independent.

However, we only considered bases of \mathbb{R}^{n} so far, and the solution set of a system of linear equations differs from \mathbb{R}^{m}. After the reading week, we shall rectify that and talk about arbitrary "abstract" vector spaces.

