1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 18

Dimension

Note that in \mathbb{R}^n we proved that a linearly independent system of vectors consists of at most n vectors, and a complete system of vectors consists of at least n vectors. In a general vector space V, there is no *a priori* n that can play this role. Moreover, the previous example shows that sometimes, no n bounding the size of a linearly independent system of vectors may exist. It however is possible to prove a version of those statements which is valid in every vector space.

Theorem 1. Let V be a vector space, and suppose that e_1, \ldots, e_k is a linearly independent system of vectors and that f_1, \ldots, f_m is a complete system of vectors. Then $k \leq m$.

Proof. Assume the contrary; without loss of generality, k > m. Since f_1, \ldots, f_m is a complete system, we can find coefficients a_{ij} for which

$$e_{1} = a_{11}f_{1} + a_{21}f_{2} + \dots + a_{m1}f_{m},$$

$$e_{2} = a_{12}f_{1} + a_{22}f_{2} + \dots + a_{m2}f_{m},$$

$$\dots$$

$$e_{k} = a_{1k}f_{1} + a_{2k}f_{2} + \dots + a_{mk}f_{m}.$$

Let us look for linear combinations $c_1e_1 + \cdots + c_kv_k$ that are equal to zero (since these vectors are assumed linearly independent, we should not find any nontrivial ones). Such a combination, once we substitute the expressions above, becomes

$$c_{1}(a_{11}f_{1}+a_{21}f_{2}+\dots+a_{m1}f_{m})+c_{2}(a_{12}f_{1}+a_{22}f_{2}+\dots+a_{m2}f_{m})+\dots+c_{k}(a_{1k}f_{1}+a_{2k}f_{2}+\dots+a_{mk}f_{m}) = (a_{11}c_{1}+a_{12}c_{2}+\dots+a_{1k}c_{k})f_{1}+\dots+(a_{m1}c_{1}+a_{m2}c_{2}+\dots+a_{mk}c_{k})f_{m}.$$

This means that if we ensure

$$a_{11}c_1 + a_{12}c_2 + \dots + a_{1k}c_k = 0,$$

...
 $a_{m1}c_1 + a_{m2}c_2 + \dots + a_{mk}c_k = 0,$

then this linear combination is automatically zero. But since we assume k > m, this system of linear equations has a nontrivial solution c_1, \ldots, c_k , so the vectors e_1, \ldots, e_k are linearly dependent, a contradiction.

This result leads, indirectly, to an important new notion.

Definition 1. We say that a vector space V is *finite-dimensional* if it has a basis consisting of finitely many vectors. Otherwise we say that V is *infinite-dimensional*.

Example 1. Clearly, \mathbb{R}^n is finite-dimensional. The space of all polynomials is infinite-dimensional: finitely many polynomials can only produce polynomials of bounded degree as linear combinations.

Lemma 1. Let V be a finite-dimensional vector space. Then every basis of V consists of the same number of vectors.

Proof. Indeed, having a basis consisting of n elements implies, in particularly, having a complete system of n vectors, so by our theorem, it is impossible to have a linearly independent system of more than n vectors. Thus, every basis has finitely many elements, and for two bases e_1, \ldots, e_k and f_1, \ldots, f_m we have $k \leq m$ and $m \leq k$, so m = k.

Definition 2. For a finite-dimensional vector V, the number of vectors in a basis of V is called the *dimension* of V, and is denoted by $\dim(V)$.

Example 2. The dimension of \mathbb{R}^n is equal to n, as expected.

Example 3. The dimension of the space of polynomials in one variable x of degree at most n is equal to n + 1, since it has a basis $1, x, \ldots, x^n$.

Example 4. The dimension of the space of $m \times n$ -matrices is equal to mn.

Coordinates

Let V be a finite-dimensional vector space, and let e_1, \ldots, e_n be a basis of V.

Definition 3. For a vector $v \in V$, the scalars c_1, \ldots, c_n for which

 $v = c_1 e_1 + c_2 e_2 + \cdots + c_n e_n$

are called the *coordinates of* ν *relative to the basis* e_1, \ldots, e_n .

Lemma 2. The above definition makes sense: each vector has (unique) coordinates.

Proof. Existence follows from the spanning property of a basis, uniqueness — from the linear independence. \Box

If ν has coordinates c_1, c_2, \ldots, c_n and w has coordinates d_1, d_2, \ldots, d_n (relative to the same basis!), then $\nu + w$ has coordinates $c_1 + d_1, c_2 + d_2, \ldots, c_n + d_n$, and for any scalar c, the vector $c \cdot \nu$ has coordinates cc_1, cc_2, \ldots, cc_n . Therefore, choosing a basis effectively identifies V with \mathbb{R}^n . However, choosing a convenient basis might simplify computations drastically, and that is where methods of linear algebra are particularly beneficial.

Change of coordinates

Let V be a vector space of dimension n, and let e_1, \ldots, e_n and f_1, \ldots, f_n be two different bases of V.

Definition 4. Let us express the vectors f_1, \ldots, f_n as linear combinations of e_1, \ldots, e_n :

$$f_1 = a_{11}e_1 + a_{21}e_2 + \dots + a_{m1}e_m,$$

$$f_2 = a_{12}e_1 + a_{22}e_2 + \dots + a_{m2}e_m,$$

...

$$f_n = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{mn}e_m.$$

The matrix (a_{ij}) is called *the transition matrix* from the basis e_1, \ldots, e_n to the basis f_1, \ldots, f_n . Its k-th column is the column of coordinates of the vector f_k relative to the basis e_1, \ldots, e_n .