1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 18

Dimension

Note that in \mathbb{R}^{n} we proved that a linearly independent system of vectors consists of at most n vectors, and a complete system of vectors consists of at least n vectors. In a general vector space V , there is no a priori n that can play this role. Moreover, the previous example shows that sometimes, no n bounding the size of a linearly independent system of vectors may exist. It however is possible to prove a version of those statements which is valid in every vector space.

Theorem 1. Let V be a vector space, and suppose that $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{k}}$ is a linearly independent system of vectors and that $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}$ is a complete system of vectors. Then $\mathrm{k} \leqslant \mathrm{m}$.

Proof. Assume the contrary; without loss of generality, $k>m$. Since f_{1}, \ldots, f_{m} is a complete system, we can find coefficients $a_{i j}$ for which

$$
\begin{gathered}
e_{1}=a_{11} f_{1}+a_{21} f_{2}+\cdots+a_{m 1} f_{m} \\
e_{2}=a_{12} f_{1}+a_{22} f_{2}+\cdots+a_{m 2} f_{m} \\
\cdots \\
e_{k}=a_{1 k} f_{1}+a_{2 k} f_{2}+\cdots+a_{m k} f_{m}
\end{gathered}
$$

Let us look for linear combinations $c_{1} e_{1}+\cdots+c_{k} \nu_{k}$ that are equal to zero (since these vectors are assumed linearly independent, we should not find any nontrivial ones). Such a combination, once we substitute the expressions above, becomes

$$
\begin{array}{r}
c_{1}\left(a_{11} f_{1}+a_{21} f_{2}+\cdots+a_{m 1} f_{m}\right)+c_{2}\left(a_{12} f_{1}+a_{22} f_{2}+\cdots+a_{m 2} f_{m}\right)+\ldots+c_{k}\left(a_{1 k} f_{1}+a_{2 k} f_{2}+\cdots+a_{m k} f_{m}\right)= \\
=\left(a_{11} c_{1}+a_{12} c_{2}+\cdots+a_{1 k} c_{k}\right) f_{1}+\cdots+\left(a_{m 1} c_{1}+a_{m 2} c_{2}+\cdots+a_{m k} c_{k}\right) f_{m} .
\end{array}
$$

This means that if we ensure

$$
\begin{gathered}
a_{11} c_{1}+a_{12} c_{2}+\cdots+a_{1 k} c_{k}=0 \\
\cdots \\
a_{m 1} c_{1}+a_{m 2} c_{2}+\cdots+a_{m k} c_{k}=0
\end{gathered}
$$

then this linear combination is automatically zero. But since we assume $k>m$, this system of linear equations has a nontrivial solution c_{1}, \ldots, c_{k}, so the vectors e_{1}, \ldots, e_{k} are linearly dependent, a contradiction.

This result leads, indirectly, to an important new notion.
Definition 1. We say that a vector space V is finite-dimensional if it has a basis consisting of finitely many vectors. Otherwise we say that V is infinite-dimensional.

Example 1. Clearly, \mathbb{R}^{n} is finite-dimensional. The space of all polynomials is infinite-dimensional: finitely many polynomials can only produce polynomials of bounded degree as linear combinations.

Lemma 1. Let V be a finite-dimensional vector space. Then every basis of V consists of the same number of vectors.

Proof. Indeed, having a basis consisting of n elements implies, in particularly, having a complete system of n vectors, so by our theorem, it is impossible to have a linearly independent system of more than n vectors. Thus, every basis has finitely many elements, and for two bases e_{1}, \ldots, e_{k} and f_{1}, \ldots, f_{m} we have $k \leqslant m$ and $m \leqslant k$, so $m=k$.

Definition 2. For a finite-dimensjonal vector V , the number of vectors in a basis of V is called the dimension of V , and is denoted by $\operatorname{dim}(\mathrm{V})$.

Example 2. The dimension of \mathbb{R}^{n} is equal to n, as expected.
Example 3. The dimension of the space of polynomials in one variable x of degree at most n is equal to $n+1$, since it has a basis $1, x, \ldots, x^{n}$.

Example 4. The dimension of the space of $m \times n$-matrices is equal to $m n$.

Coordinates

Let V be a finite-dimensional vector space, and let e_{1}, \ldots, e_{n} be a basis of V .
Definition 3. For a vector $v \in \mathrm{~V}$, the scalars $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ for which

$$
v=c_{1} e_{1}+c_{2} e_{2}+\cdots+c_{n} e_{n}
$$

are called the coordinates of v relative to the basis $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$.
Lemma 2. The above definition makes sense: each vector has (unique) coordinates.
Proof. Existence follows from the spanning property of a basis, uniqueness - from the linear independence.

If v has coordinates $c_{1}, c_{2}, \ldots, c_{n}$ and w has coordinates $d_{1}, d_{2}, \ldots, d_{n}$ (relative to the same basis!), then $v+w$ has coordinates $c_{1}+d_{1}, c_{2}+d_{2}, \ldots, c_{n}+d_{n}$, and for any scalar c, the vector $c \cdot v$ has coordinates c_{1}, $c_{2}, \ldots, c c_{n}$. Therefore, choosing a basis effectively identifies V with \mathbb{R}^{n}. However, choosing a convenient basis might simplify computations drastically, and that is where methods of linear algebra are particularly beneficial.

Change of coordinates

Let V be a vector space of dimension n, and let e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{n} be two different bases of V.
Definition 4. Let us express the vectors f_{1}, \ldots, f_{n} as linear combinations of e_{1}, \ldots, e_{n} :

$$
\begin{gathered}
f_{1}=a_{11} e_{1}+a_{21} e_{2}+\cdots+a_{m 1} e_{m} \\
f_{2}=a_{12} e_{1}+a_{22} e_{2}+\cdots+a_{m 2} e_{m} \\
\ldots \\
f_{n}=a_{1 n} e_{1}+a_{2 n} e_{2}+\cdots+a_{m n} e_{m}
\end{gathered}
$$

The matrix $\left(a_{i j}\right)$ is called the transition matrix from the basis e_{1}, \ldots, e_{n} to the basis f_{1}, \ldots, f_{n}. Its k-th column is the column of coordinates of the vector f_{k} relative to the basis e_{1}, \ldots, e_{n}.

