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Dimension

Note that in Rn we proved that a linearly independent system of vectors consists of at most n vectors, and
a complete system of vectors consists of at least n vectors. In a general vector space V, there is no a priori
n that can play this role. Moreover, the previous example shows that sometimes, no n bounding the size
of a linearly independent system of vectors may exist. It however is possible to prove a version of those
statements which is valid in every vector space.

Theorem 1. Let V be a vector space, and suppose that e1, . . . , ek is a linearly independent system of vectors
and that f1, . . . , fm is a complete system of vectors. Then k 6 m.

Proof. Assume the contrary; without loss of generality, k > m. Since f1, . . . , fm is a complete system, we
can find coefficients aij for which

e1 = a11f1 + a21f2 + · · ·+ am1fm,

e2 = a12f1 + a22f2 + · · ·+ am2fm,

. . .

ek = a1kf1 + a2kf2 + · · ·+ amkfm.

Let us look for linear combinations c1e1 + · · ·+ ckvk that are equal to zero (since these vectors are assumed
linearly independent, we should not find any nontrivial ones). Such a combination, once we substitute the
expressions above, becomes

c1(a11f1+a21f2+· · ·+am1fm)+c2(a12f1+a22f2+· · ·+am2fm)+. . .+ck(a1kf1+a2kf2+· · ·+amkfm) =

= (a11c1 + a12c2 + · · ·+ a1kck)f1 + · · ·+ (am1c1 + am2c2 + · · ·+ amkck)fm.

This means that if we ensure

a11c1 + a12c2 + · · ·+ a1kck = 0,

. . .

am1c1 + am2c2 + · · ·+ amkck = 0,

then this linear combination is automatically zero. But since we assume k > m, this system of linear equations
has a nontrivial solution c1, . . . , ck, so the vectors e1, . . . , ek are linearly dependent, a contradiction.

This result leads, indirectly, to an important new notion.

Definition 1. We say that a vector space V is finite-dimensional if it has a basis consisting of finitely many
vectors. Otherwise we say that V is infinite-dimensional.

Example 1. Clearly, Rn is finite-dimensional. The space of all polynomials is infinite-dimensional: finitely
many polynomials can only produce polynomials of bounded degree as linear combinations.
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Lemma 1. Let V be a finite-dimensional vector space. Then every basis of V consists of the same number
of vectors.

Proof. Indeed, having a basis consisting of n elements implies, in particularly, having a complete system of
n vectors, so by our theorem, it is impossible to have a linearly independent system of more than n vectors.
Thus, every basis has finitely many elements, and for two bases e1, . . . , ek and f1, . . . , fm we have k 6 m
and m 6 k, so m = k.

Definition 2. For a finite-dimensjonal vector V, the number of vectors in a basis of V is called the dimension
of V, and is denoted by dim(V).

Example 2. The dimension of Rn is equal to n, as expected.

Example 3. The dimension of the space of polynomials in one variable x of degree at most n is equal to
n+ 1, since it has a basis 1, x, . . . , xn.

Example 4. The dimension of the space of m× n-matrices is equal to mn.

Coordinates

Let V be a finite-dimensional vector space, and let e1, . . . , en be a basis of V.

Definition 3. For a vector v ∈ V, the scalars c1, . . . , cn for which

v = c1e1 + c2e2 + · · ·+ cnen

are called the coordinates of v relative to the basis e1, . . . , en.

Lemma 2. The above definition makes sense: each vector has (unique) coordinates.

Proof. Existence follows from the spanning property of a basis, uniqueness — from the linear independence.

If v has coordinates c1, c2, . . . , cn and w has coordinates d1, d2, . . . , dn (relative to the same basis!), then
v+w has coordinates c1+d1, c2+d2, . . . , cn+dn, and for any scalar c, the vector c ·v has coordinates cc1,
cc2, . . . , ccn. Therefore, choosing a basis effectively identifies V with Rn. However, choosing a convenient
basis might simplify computations drastically, and that is where methods of linear algebra are particularly
beneficial.

Change of coordinates

Let V be a vector space of dimension n, and let e1, . . . , en and f1, . . . , fn be two different bases of V.

Definition 4. Let us express the vectors f1, . . . , fn as linear combinations of e1, . . . , en:

f1 = a11e1 + a21e2 + · · ·+ am1em,

f2 = a12e1 + a22e2 + · · ·+ am2em,

. . .

fn = a1ne1 + a2ne2 + · · ·+ amnem.

The matrix (aij) is called the transition matrix from the basis e1, . . . , en to the basis f1, . . . , fn. Its k-th
column is the column of coordinates of the vector fk relative to the basis e1, . . . , en.
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