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Let us start with an example of computing coordinates. Let V = R2. We take the basis e1 =

(
1
1

)
, e2 =

(
4
3

)
.

Let us find find the coordinates of the vector

(
4
7

)
in R2 relative to the basis e1, e2. Recall that

c1e1+c2e2 = (e1 | e2)

(
c1
c2

)
. Therefore, coordinates of

(
4
7

)
relative to this basis are (e1 | e2)

−1

(
4
7

)
=

(
16
−3

)
.

Change of coordinates

Before we proceed with more theory, let us also discuss an example of computing a transition matrix,
in the same fashion as we just computed coordinates. Let V = R2. We shall compute the transition

matrix Me,f from the basis e1 =

(
1
1

)
, e2 =

(
4
3

)
to the basis f1 =

(
13
−12

)
, f2 =

(
1
−1

)
. We note that

(e1 | e2)Mef = (f1 | f2), so Mef = (e1 | e2)
−1(f1 | f2) =

(
−87 −7
25 2

)
.

If e1, . . . , en and f1, . . . , fn be two different bases of V, we can compute coordinates of each vector v with
respect to either of those bases, so that

v = x1e1 + · · ·+ xnen

and
v = y1f1 + · · ·+ ynfn.

Our goal now is to figure out how these are related. Let us denote ve the column of coordinates of v relative
to the first basis, and by vf the column of coordinates of v relative to the second basis.

Lemma 1. We have
ve = Me,fvf .

In plain words, if we call e1, . . . , en the “old basis” and f1, . . . , fn the “new basis”, then this system tells
us that the product of the transition matrix with the columns of new coordinates of a vector is equal to the
column of old coordinates.

Proof. The proof is fairly straightforward: we take the formula

v = y1f1 + · · ·+ ynfn,

and substitute instead of fi’s their expressions in terms of ej’s:

f1 = a11e1 + a21e2 + · · ·+ am1em,

f2 = a12e1 + a22e2 + · · ·+ am2em,

. . .

fn = a1ne1 + a2ne2 + · · ·+ amnem.
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What we get is

y1(a11e1+a21e2+· · ·+an1en)+y2(a12e1+a22e2+· · ·+an2en)+. . .+yn(a1ne1+a2ne2+· · ·+annen) =

= (a11y1 + a12y2 + · · ·+ a1nyn)e1 + · · ·+ (an1y1 + an2y2 + · · ·+ annyn)en.

Since we know that coordinates are uniquely defined, we conclude that

a11y1 + a12y2 + · · ·+ a1nyn = x1,

. . .

an1y1 + an2y2 + · · ·+ annyn = xn,

which is what we want to prove.

Let us remark that there is a slightly confusing aspect of transition matrices that needs to be noted.
Originally, the transition matrix was defined as a matrix of coefficients expressing the “new” basis via the
“old” basis. Now we just proved that it also expresses the “old” coordinates via the “new” coordinates.
Thus, bases and coordinates transform in opposite ways. This later on gives rise to the notions of covariance
and contravariance in theoretical physics and differential geometry. Covariant objects transform like vectors,
and contravariant objects transform like coordinates.

We shall now prove a useful “multiplicative” property of transition matrices.

Lemma 2. We have (for three different bases e1,. . . , en, f1, . . . , fn, g1,. . . , gn)

Me,fMf ,g = Me,g

and
Me,fMf ,e = In.

Proof. Applying the formula above twice, we have

ve = Me,fvf = Me,fMf ,gvg.

But we also have
ve = Me,gvg.

Therefore
Me,fMf ,gvg = Me,gvg

for every vg. From our previous classes we know that knowing Av for all vectors v completely determines
the matrix A, so Me,fMf ,g = Me,g as required. Since manifestly we have Me,e = In, we conclude by letting
gk = ek, k = 1, . . . , n, that Me,fMf ,e = In.

Linear maps

Definition 1. Suppose that V and W are two vector spaces. A function f : V → W is said to be a linear
map, or a linear transformation, if

• for v1, v2 ∈ V, we have f(v1 + v2) = f(v1) + f(v2),
• for c ∈ R, v ∈ V, we have f(c · v) = c · f(v).

When V = W, a linear map f : V → V is sometimes called a linear operator.

The notion of a linear map is one of the most important notions of linear algebra. So far in your calculus
class you discussed functions of one variable and studied those functions using derivatives. Once you move
to vector functions of several variables, an inevitable move for purposes of geometry and physics, derivatives
of such functions are linear maps between vector spaces.
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Lemma 3. Suppose that f is a linear map. Then f(0) = 0, and f(−v) = −f(v).

Proof. This follows from 0 · v = 0 and (−1) · v = −v.

Thus, we can say that a linear map is a function between vector spaces that preserves all the structures.

Example 1. Let us consider the vector spaces P2 and P3 of all polynomials in one variable x of degrees at
most 2 and at most 3, respectively. We consider a map X : P2 → P3 defined by X(f(x)) = x · f(x), and a map
D : P3 → P2 defined by D(f(x)) = f ′(x). These are easily checked to be linear maps.
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