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Gauss–Jordan elimination

Last time we discussed bringing matrices to reduced row echelon form. If a
system of equations has a reduced row echelon matrix, it is very easy to
describe all solutions.

If the last non-zero equation reads 0 = 1, the system is clearly
inconsistent.

If the pivot of last non-zero equation is a coefficient of some unknown, the
system is consistent, and all solutions are easy to describe. For that, we
shall separate unknowns into two groups, the principal (pivotal) unknowns,
that is unknowns for which the coefficient in one of the equations is the
pivot of that equation, and all the other ones, that we call free unknowns.

Once we assign arbitrary numeric values to free unknowns, each of the
equations gives us the unique value of its pivotal unknown which makes
the system consistent. Thus, we described the solution set in a parametric
form using free unknowns as parameters.
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Gauss–Jordan elimination: an example
Continuing with our example, the matrix

A =

1 2 0 0 −3 11
0 0 1 0 5 −15
0 0 0 1 −1 5


is in reduced row echelon form. The corresponding system of equations is

x1 + 2x2 − 3x5 = 11,

x3 + 5x5 = −15,

x4 − x5 = 5.

The pivotal unknowns are x1, x3, and x4, and the free unknowns are x2
and x5. Assigning arbitrary parameters x2 := t2 and x5 := t5 to the free
unknowns, we obtain the following description of the solution set:

x1 = 11− 2t2 + 3t5, x2 = t2, x3 = −15− 5t5, x4 = 5 + t5, x5 = t5.

where t2 and t5 are arbitrary numbers.
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Some remarks
In practice, we don’t have to do first the row echelon form, then the
reduced row echelon form: we can use the “almost pivotal” entry (the first
non-zero entry of the row being processed) to cancel all other entries in its
column, thus obtaining the reduced row echelon form right away.

The reduced row echelon form, unlike the row echelon form, is unique,
that is does not depend on the type of row operations performed (there is
freedom in which rows we swap etc.). We shall not prove it in this course.

For the intersection of two 2D planes in 3D, if the planes are not parallel,
the reduced row echelon form will have one free variable, which can be
taken as a parameter of the intersection line. More generally, one linear
equation in n unknowns defines an (n − 1)-dimensional plane, and we just
proved that the intersection of several planes can be parametrised in a
similar way (by free unknowns).

If we have one equation with one unknown, ax = b, then we can just write
x = b/a. Maybe we can do something similar for many unknowns? It turns
out that there is a way to re-package our approach into something similar.
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Matrix arithmetic
Let us create an algebraic set-up for all that. Protagonists: vectors
(columns of coordinates) and matrices (rectangular arrays of coordinates).
Of course, a vector is a particular case of a matrix (with only one column).

We know that the two most basic operators on vectors are addition and
re-scaling. The same works for matrices, component-wise. Of course, to
add two matrices, they must have the same dimensions:

A11 A12 · · · A1n

A21 A22 · · · A2n
... . . .

. . . . . .
Am1 Am2 · · · Amn

+


B11 B12 · · · B1n

B21 B22 · · · B2n
... . . .

. . . . . .
Bm1 Bm2 · · · Bmn

 =

=


A11 + B11 A12 + B12 · · · A1n + B1n

A21 + B21 A22 + B22 · · · A2n + B2n
... . . .

. . . . . .
Am1 + Bm1 Am2 + Bm2 · · · Amn + Bmn


Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 6 5 / 14



Matrix arithmetic
Next, we define products of matrices and vectors. For that, we once again
examine a system of m simultaneous linear equations with n unknowns

A1,1x1 + A1,2x2 + · · ·+ A1,nxn = B1,

A2,1x1 + A2,2x2 + · · ·+ A2,nxn = B2,

. . .

Am,1x1 + Am,2x2 + · · ·+ Am,nxn = Bm.

We introduce new notation for it, A · x = b (or even Ax = b), where

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
... . . .

. . . . . .
Am1 Am2 · · · Amn

 , x =


x1
x2
...
xn

 , b =


B1

B2
...

Bm

 .

Note that this new notation is a bit different from the one last week,
where A denoted the matrix including b as the last column.
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Matrix arithmetic

In other words, for an m × n-matrix A, and a column x of height n, we
define the column b = A · x as the column of height m whose k-th entry is
Bk = Ak1x1 + · · ·+ Aknxn:

A11 A12 · · · A1n

A21 A22 · · · A2n
... . . .

. . . . . .
Am1 Am2 · · · Amn

 ·

x1
x2
...
xn

 =


A11x1 + · · ·+ A1nxn
A21x1 + · · ·+ A2nxn

...
Am1x1 + · · ·+ Amnxn


A useful mnemonic rule is that the entries of A · x are “dot products” of

rows of A with the column x.
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Properties of A · b

The products we just defined satisfy the following properties:

A · (x1 + x2) = A · x1 + A · x2,
(A1 + A2) · x = A1 · x + A2 · x,

c · (A · x) = (c · A) · x = A · (c · x).

Here A, A1, and A2 are m × n-matrices, x, x1, and x2 are columns of
height n (vectors), and c is a scalar.

Now we have all the ingredients to define products of matrices in the most
general context. There will be three equivalent definitions, each useful for
some purposes.
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Matrix product

One definition is immediately built upon what we just defined before. Let
A be an m × n-matrix, and B an n × k-matrix. Their product A · B, or
AB, is defined as follows: it is the m × k-matrix C whose columns are
obtained by computing the products of A with columns of B:

A · (b1 | b2 | . . . | bk) = (A · b1 | A · b2 | . . . | A · bk)

Another definition states that the product of an m × n-matrix A and an
n × k-matrix B is the m × k-matrix C with entries

Cij = Ai1B1j + Ai2B2j + · · ·+ AinBnj

(here i runs from 1 to m, and j runs from 1 to k). In other words, Cij is
the “dot product” of the i-th row of A and the j-th column of B.

Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 6 9 / 14



Examples

Let us take U =

(
0 1
0 0

)
, V =

(
0 0
1 0

)
, W =

(
2 3 1
5 2 0

)
.

Note that the products U · U, U · V , V · U, V · V , U ·W , and V ·W are
defined, while the products W · U, W · V , and W ·W are not defined.

We have U · U =

(
0 0
0 0

)
, U · V =

(
1 0
0 0

)
, V · U =

(
0 0
0 1

)
,

V · V =

(
0 0
0 0

)
, U ·W =

(
5 2 0
0 0 0

)
, V ·W =

(
0 0 0
2 3 1

)
.

In particular, even though both matrices U · V and V · U are both defined,
they are not equal.
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Matrix product: third definition

However, these two definitions appear a bit ad hoc, without no good
reason to them. The third definition, maybe a bit more indirect, in fact
sheds light on why the matrix product is defined in exactly this way.

Let us view, for a given m × n-matrix A, the product A · x as a rule that
takes a vector x with n coordinates, and computes out of it another vector
with m coordinates, which is denoted by A · x. Then, given two matrices,
an m × n-matrix A and an n × k-matrix B, from a given vector x with k
coordinates, we can first use the matrix B to compute the vector B · x
with n coordinates, and then use the matrix A to compute the vector
A · (B · x) with m coordinates.

By definition, the product of the matrices A and B is the matrix C
satisfying

C · x = A · (B · x) .
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Equivalence of the definitions

The first and the second definition are obviously equivalent: the entry in
the i-th row and the j-th column of the matrix

(A · b1 | A · b2 | . . . | A · bk)

is manifestly equal to Ai1B1j + Ai2B2j + · · ·+ AinBnj . (Note that


B1j

B2j
...

Bnj


is precisely bj , the j-th column of B).
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Equivalence of the definitions

For the third definition, note that the property C · x = A · (B · x) must
hold for all x, in particular for x = ej , the standard unit vector which has
the j-th coordinate equal to 1, and all other coordinates equal to zero.

Note that for each matrix M the vector M · ej (if defined) is equal to the
j-th column of M. In particular, A · (B · ej) = A · bj . Therefore, we must
use as C the matrix A · B from the first definition (whose columns are the
vectors A · bj): only in this case C · ej = A · bj = A · (B · ej) for all j . To
show that C · x = A · (B · x) for all vectors x, we note that such a vector
can be represented as x1e1 + · · ·+ xkek , and then we can use properties of
products of matrices and vectors:

A · (B · x) = A · (B · (x1e1 + · · ·+ xkek)) =

= A · (x1(B · e1) + · · ·+ xk(B · ek)) = x1A · (B · e1) + · · ·+ xkA · (B · ek) =

= x1C · e1 + · · ·+ xkC · ek = C · (x1e1 + · · ·+ xkek) = C · x.
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Properties of the matrix product

Let us show that the matrix product we defined satisfies the following
properties (whenever all matrix operations below make sense):

A · (B + C ) = A · B + A · C ,

(A + B) · C = A · C + B · C ,

(c · A) · B = c · (A · B) = A · (c · B),

(A · B) · C = A · (B · C )
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