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Invertible matrices

Theorem. 1. An elementary matrix is invertible.
2. If an m × n-matrix A is invertible, then m = n.
3. An n × n-matrix A is invertible if and only if it can be represented as a
product of elementary matrices.

Proof. Statements 1 and 2 were proved earlier.
3. If A can be represented as a product of elementary matrices, it is
invertible, since products of invertible matrices are invertible. If A is
invertible, then the last row of its reduced row echelon form must be
non-zero, or we get a contradiction like in the previous argument.
Therefore, each row of the reduced row echelon form of A, and hence each
column of the reduced row echelon form of A, has a pivot, so the reduced
row echelon form of A is the identity matrix. We conclude that
E1 · E2 · · ·Ep · A = In, so A = (Ep)−1 · · · (E2)−1 · (E1)−1, which is a
product of elementary matrices.
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One more property of inverses

There is another useful property that is proved completely analogously:

If for an n × n-matrix A, there exists a “one-sided” inverse (that
is, B for which only one of the two conditions AB = In and
BA = In are satisfied), then B = A−1.

To prove it, it is enough to consider the case AB = In (otherwise we can
swap the roles of A and B). In this case, we proceed as before to conclude
that the reduced row echelon form of A cannot have a row of zeros, hence
that reduced row echelon form is the identity matrix, hence A is invertible.
Finally, A−1(AB) = (A−1A)B = InB = B.

Warning: we know that for m 6= n an m × n-matrix cannot be invertible,
but such a matrix can have a one-sided inverse. You will be asked to
construct an example in the next homework.
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Computing inverses

Our results lead to an elegant algorithm for computing the inverse of an
n × n-matrix A.

Form an n × (2n)-matrix (A | In). Apply the usual algorithm to compute
its reduced row echelon form. If A is invertible, the output is a matrix of
the form (In | B), where B = A−1.

Justification. If A is invertible, its reduced row echelon form is the
identity matrix In. Therefore, the computation of the reduced row echelon
form of (A | In) will produce a matrix of the form (In | B), since pivots
emerge from the left to the right. This matrix is clearly in its reduced row
echelon form. Let us take the elementary matrices corresponding to the
appropriate row operations, so that E1 · E2 · · ·Ep · A = In. This means, as
we just proved, that A−1 = E1 · E2 · · ·Ep. It remains to remark that

E1 · E2 · · ·Ep · (A | In) = (E1 · E2 · · ·Ep · A | E1 · E2 · · ·Ep),

so (In | B) = (In | E1 · E2 · · ·Ep) = (In | A−1).
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Towards computing determinants

In school, you may have seen either the formula

A−1 =

( d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

)

for a 2× 2-matrix A =

(
a b
c d

)
, or its consequence, the formula

{
x = de−bf

ad−bc ,

y = af−ce
ad−bc ,

allowing to solve a system of two equations with two unknowns{
ax + by = e,

cx + dy = f .

Now, we shall see how to generalise these formulas for n × n-matrices.
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Permutations

To proceed, we need to introduce the notion of a permutation. By
definition, a permutation of n elements is a rearrangement of numbers
1, 2, . . . , n in a particular order.

For example, 1, 3, 4, 2 is a permutation of four elements, and 1, 4, 3, 4, 2 is
not (because the number 4 is repeated).

We shall also use the two-row notation for permutations: a permutation of
n elements may be represented by a 2× n-matrix made up of columns(
j
aj

)
, where aj is the number at the j-th place in the permutation.

For example, the permutation 1, 3, 4, 2 may be represented by the matrix(
1 2 3 4
1 3 4 2

)
, but also by the matrix

(
1 4 3 2
1 2 4 3

)
, and by many other

matrices.

Incidentally, the number of different permutations of n elements is equal to
1 · 2 · · · n, this number is called “n factorial” and is denoted by n! (n with
an exclamation mark).
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Odd and even permutations

Let σ be a permutation of n elements, written in the one-row notation.
Two numbers i and j , where 1 ≤ i < j ≤ n, are said to form an inversion
in σ, if they are “listed in wrong order”, that is j appears before i in σ.

For the permutation 1, 3, 4, 2, there are 6 pairs (i , j) to look at: (1, 2),
(1, 3), (1, 4), (2, 3), (2, 4), (3, 4). Of these, the pair (2, 3) forms an
inversion, and the pair (2, 4) does, and other pairs do not.

A permutation is said to be even if its number of inversions is even, and
odd otherwise. One of the most important properties of this division into
even and odd is the following: if we swap two numbers in a permutation
a1, . . . , an, it makes an even permutation into an odd one, and vice versa.

Let us first remark that this is obvious if we swap two neighbours, ap and
ap+1. Indeed, this only changes whether they form an inversion or not,
since their positions relative to others do not change. Now, a swap of ap
and aq can be done by dragging ap through ap+1, . . . , aq−1, swapping it
with aq, and dragging aq through aq−1, . . . , ap+1, so altogether we do an
odd number of “swapping neighbours”.
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Odd and even permutations
The property that we just proved is useful for a yet another definition of
even / odd permutations that refers to the two-row notation. Namely, a
permutation in two-row notation is even if the total number of inversions
in the top and the bottom row is even, and is odd, if the total number of
inversions in the top and the bottom row is odd.

The usual problem to address is whether this definition makes sense or not:
maybe it will give different answers for different two-row representations.
Luckily, it is not the case: different representations are obtained from one
another by re-arranging columns, and each swap of columns will change
the number of inversions in the top row and in the bottom row by odd
numbers, so altogether will give a change by an even number.

For example, the two different representations of 1, 3, 4, 2, that we

discussed, everything works: for

(
1 2 3 4
1 3 4 2

)
, the total number of

inversions is 2 and for

(
1 4 3 2
1 2 4 3

)
the total number of inversions is

3 + 1 = 4.
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Determinants

We shall now define an important numeric invariant of an n × n-matrix A,
the determinant of A, denoted det(A). Informally, the determinant of A is
the signed sum of all possible products of n entries of A, chosen in a way
that every row and every column is represented in the product exactly
once.

Formally,

det(A) =
∑
σ

sign(σ)Ai1j1Ai2j2 · · ·Ainjn .

Here σ runs over all permutations of n elements, and

(
i1 i2 . . . in
j1 j2 . . . jn

)
is

some two-row representation of σ. The signature sign(σ) of a permutation
σ is defined to be 1 if σ is even, and −1 if σ is odd.
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