# 1111: Linear Algebra I Selected exam questions from past years 

November 29, 2018

1. (a) Compute the area of the parallelogram determined by the vectors $\mathbf{a}=(3,5,-1)$ and $\mathbf{b}=(2,0,1)$.
(b) Compute the angle between the diagonals of the above parallelogram.
2. Is the vector $\mathbf{n}=(-1,-3,4)$ parallel to the intersection line of the plane $\alpha$ passing through the points $(0,1,-1),(5,1,-3)$, and $(2,-3,3)$ and the plane $\beta$ passing through the points $(2,1,-1),(5,1,-3)$, and ( $1,-2,3$ )? Why?
3. Denote by $A$ the matrix $\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$ and by $b$ the vector $\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$.
(a) Show how to compute the matrix $A^{-1}$ using elementary row operations, and use the matrix $A^{-1}$ to solve the system $\mathrm{Ax}=\mathrm{b}$.
(b) Show how to use the Cramer's rule to solve the system $A x=b$.
4. Consider the system of linear equations

$$
\left\{\begin{array}{l}
4 x_{1}-2 x_{2}+2 x_{3}=5, \\
2 x_{1}-x_{2}+3 x_{3}=2, \\
7 x_{1}-2 x_{2}+3 x_{3}=6 .
\end{array}\right.
$$

(a) Use reduced row echelon forms to solve this system.
(b) Compute the inverse matrix using the adjugate matrix formula, and use it to solve this system.
5. Denote by $A$ the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)
$$

and by $b$ the vector $\left(\begin{array}{c}5 \\ -1 \\ 2\end{array}\right)$. List all minors and all cofactors of $A$, and write down the expansion of $\operatorname{det}(\mathcal{A})$ along the second row and along the third column. Show how to use the Cramer's rule to solve the system $A x=b$.
6. Using elementary row operations, compute the inverse of the matrix $\left(\begin{array}{llc}1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 4 & 16\end{array}\right)$. Find a polynomial $f(t)$ of degree at most 2 for which $f(1)=1, f(3)=0, f(4)=11$.
7. In this question, $A$ and $B$ are $n \times n$-matrices. For each of the following statements, prove it if it is true, and give a counterexample if it is false.
(a) $A^{2}-B^{2}=(A+B)(A-B)$ if and only if $A B=B A$.
(b) If $A^{2}=B^{2}$, then $A=B$ or $A=-B$.
8. (a) Which permutations are called even, and which - odd? Write down the corresponding definitions.
(b) Does the product $a_{35} a_{21} a_{46} a_{17} a_{73} a_{54} a_{62}$ occur in the expansion of the $7 \times 7$-determinant? If yes, what is the coefficient of this product there? Answer the same questions for $a_{34} a_{15} a_{67} a_{26} a_{73} a_{51} a_{62}$.
(c) Find $i, j$, and $k$ for which the product $a_{51} a_{i 6} a_{1 j} a_{35} a_{44} a_{6 k}$ occurs in the expansion of the $6 \times 6$ determinant with coefficient $(-1)$.
9. (a) Outline the proof from class of the fact the determinant of a matrix does not change if we add to one of its rows a multiple of another row.
(b) For the matrix $A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ -2 & 1 & 4 & -3 \\ -3 & -4 & 1 & 2 \\ -4 & 3 & -2 & 1\end{array}\right)$, compute the matrix product of $A$ and its transpose matrix, and explain how to use your result to calculate the determinant of $A$.
10. Prove that three points in the plane whose coordinates are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ respectively, all belong to the same line if and only if

$$
\operatorname{det}\left(\begin{array}{lll}
1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3}
\end{array}\right)=0
$$

11. Determine all values of $x$ for which the matrix

$$
\left(\begin{array}{ccc}
2-x & 1 & 0 \\
-1 & -x & 1 \\
5 & 5 & 3-x
\end{array}\right)
$$

is not invertible.
12. Let $A$ and $B$ be $n \times n$-matrices. Which of the following statements are true:
(a) If $A B$ is invertible, then either $A$ is invertible or $B$ is invertible.
(b) If $A B$ is invertible, then $A$ is invertible and $B$ is invertible.
(c) If either $A$ is invertible or $B$ is invertible, then $A B$ is invertible.
(d) If $A$ is invertible and $B$ is invertible, then $A B$ is invertible.
13. Compute the determinant of the $n \times n$-matrix $\left(\begin{array}{ccccc}0 & 1 & 1 & \ldots & 1 \\ 1 & 0 & 1 & \ldots & 1 \\ \vdots & \ldots & \ddots & \ldots & \vdots \\ \vdots & \ldots & \ldots & \ddots & \vdots \\ 1 & 1 & \ldots & 1 & 0\end{array}\right) \quad$ (all diagonal entries are equal to 0 , all off-diagonal entries are equal to 1 ).
14. (a) Prove that for two square matrices $A$ and $B$ of the same size we always have $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(b) How many distinct numbers can there be among the six traces

$$
\operatorname{tr}(A B C), \operatorname{tr}(A C B), \operatorname{tr}(B C A), \operatorname{tr}(B A C), \operatorname{tr}(C B A), \operatorname{tr}(C A B) ?
$$

for different choices of square matrices $A, B, C$ of the same size? For each variant of the answer, give an example.
15. Assume that $A$ is a $2 \times 2$-matrix with $A^{2}-3 A+2 I_{2}=0$. What are possible values of $\operatorname{tr}(A)$ ?
16. Let us consider matrices $B$ which commute with the matrix $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, that is $A B=B A$. How many rows and columns may such matrix have? Show that the set of all such matrices forms a vector space with respect to the usual matrix operations. Compute the dimension of that space.
17. Determine all values of $x$ for which the three vectors

$$
\left(\begin{array}{c}
2-x \\
-1 \\
5
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
-x \\
5
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
1 \\
3-x
\end{array}\right)
$$

are linearly dependent.
18. For the matrix

$$
A=\left(\begin{array}{ccccccc}
1 & 1 & 2 & 1 & 2 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 2 \\
2 & 1 & 1 & 1 & 1 & 2 & 5 \\
-1 & 2 & 1 & 1 & 0 & 1 & 1
\end{array}\right)
$$

compute the dimension and find a basis of the solution space to the system of equations $A x=0$.
19. A $3 \times 3$-checkboard whose cells are filled in with 9 real numbers is called a magic square if all its row sums are pairwise equal, and equal to all of its column sums. Prove that the set of all magic squares forms a subspace of $\mathbb{R}^{9}$, compute the dimension of this space, and find a basis of this space.
20. (a) State the definition of a basis of a vector space. Show that the vectors $f_{1}=\binom{3}{-1}$ and $f_{2}=\binom{1}{-1}$ form a basis of $\mathbb{R}^{2}$.
(b) Suppose that the matrix of a linear transformation of $\mathbb{R}^{2}$ relative to the basis $f_{1}, f_{2}$ from (a) is $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Compute the matrix of the same linear transformation relative to the basis of standard unit vectors of $\mathbb{R}^{2}$.
21. Show that the map of the space $P_{2}$ of all polynomials in $x$ of degree at most 2 to the same space that takes every polynomial $f(x)$ to $3 x^{2} f^{\prime \prime}(x)+3 f(x-1)$ is a linear transformation, and compute the matrix of that transformation relative to the basis $1, x+1,(x+1)^{2}$.
22. (a) State the definition of an eigenvalue and of an eigenvector of a linear transformation of a vector space $V$.
(b) What are the eigenvalues of the linear transformation $T$ of the four-dimensional space of $2 \times 2$ matrices which sends every matrix $X$ to $A X-X A$, where $A=\left(\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right)$ ?
(c) Does the linear transformation T from (b) have a basis of eigenvectors?

