MA 1111: Linear Algebra I
Tutorial problems, September 20, 2018

1. Given that the points $(1,1),(-1,-1)$, and $(0,2)$ are three vertices of a parallelogram, find possible positions of its fourth vertex.
2. Compute the angle between the vectors $\mathbf{a}=(3,5)$ and $\mathbf{b}=(2,1)$.
3. (a) Compute the area of the parallelogram determined by the vectors $\mathbf{u}=(1,2,2)$ and $\mathbf{v}=(2,3,5)$. (b) Compute the volume of the parallelepiped determined by the vectors $\mathbf{u}=(1,2,2), \mathbf{v}=(2,3,5)$, and $\mathbf{w}=(3,0,1)$.
4. If \mathbf{u}, \mathbf{v}, and \mathbf{w} are three-dimensional vectors, is the expression $\mathbf{u} \times(\mathbf{v} \cdot \mathbf{w})$ defined? Explain your answer.
5. (a) For a cube with side length equal to 1 , show that only possible distances between its two vertices are $1, \sqrt{2}$, and $\sqrt{3}$. (b) Take one vertex of a cube, say A, and connect it to two vertices B and C for which $A B=A C=\sqrt{2}$. Determine the angle $\angle B A C$.
