MA 1111: Linear Algebra I
Tutorial problems, October 4, 2018

1. (a) Compute the inverse of the matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right)$;
(b) Using the inverse matrix you computed, solve the system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}=a \\
x_{1}+2 x_{2}+4 x_{3}=b \\
x_{1}+3 x_{2}+9 x_{3}=c
\end{array}\right.
$$

for all values of parameters \mathfrak{a}, b, and c .
2. Which of the following matrices represent the same permutations? Which of them are even, and which are odd?
(a) $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3\end{array}\right)$;
(b) $\left(\begin{array}{lllll}1 & 4 & 2 & 3 & 5 \\ 2 & 1 & 5 & 3 & 4\end{array}\right)$;
(c) $\left(\begin{array}{lllll}5 & 3 & 1 & 4 & 2 \\ 3 & 5 & 2 & 4 & 1\end{array}\right)$.
3. Describe all values of i, j, k for which the 2×5-matrix

$$
\left(\begin{array}{lllll}
1 & 4 & 5 & i & 3 \\
2 & j & k & 5 & 1
\end{array}\right)
$$

represents an odd permutation.
4. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. (a) Write down explicitly the matrix $A^{2}=A \cdot A$. (b) Show that if $A^{2}=I_{2}$, then either $A=I_{2}$, or $A=-I_{2}$, or $\operatorname{tr}(A)=0$ (as explained in the current homework, $\operatorname{trace} \operatorname{tr}(\mathcal{A})$ is the sum of numbers on the diagonal). (c) Give an example of a matrix $A \neq \pm \mathrm{I}_{2}$ for which $A^{2}=I_{2}$.
5. Assume that the numbers a, b, c, d, e, and f are such that the system of equations

$$
\left\{\begin{array}{l}
a x_{1}+b x_{2}=e \\
c x_{1}+d x_{2}=f
\end{array}\right.
$$

has two different solutions. Show that the system

$$
\left\{\begin{array}{l}
a x_{1}+b x_{2}=0 \\
c x_{1}+d x_{2}=0
\end{array}\right.
$$

also has two different solutions. (Hint: one solution to this system is $(0,0)$, so to solve the problem it is enough to find one solution different from $(0,0)$.)

