MA 1111: Linear Algebra I Tutorial problems, October 19, 2018

In problems 1–4, determine whether the system of vectors $\{v_i\}$ in the vector space V (a) is linearly independent; (b) complete; (c) forms a basis.

1.
$$V = \mathbb{R}^2$$
, $v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
2. $V = \mathbb{R}^2$, $v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
3. $V = \mathbb{R}^3$, $v_1 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$, $v_2 = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$, $v_3 = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$, $v_4 = \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix}$, $v_5 = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$.
4. $V = \mathbb{R}^3$, $v_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

5. (a) Prove that if the system of vectors \mathbf{u} , \mathbf{v} , \mathbf{w} of some vector space is linearly independent, then the system of vectors $\mathbf{u} - 2\mathbf{w}$, $\mathbf{v} + \mathbf{w}$, \mathbf{w} is linearly independent as well.

(b) Prove that if the system of vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of some vector space is complete, then the system of vectors $\mathbf{u} - 2\mathbf{w}, \mathbf{v} + \mathbf{w}, \mathbf{w}$ is complete as well.