MA 1111: Linear Algebra I
Tutorial problems, October 19, 2018
In problems 1-4, determine whether the system of vectors $\left\{v_{i}\right\}$ in the vector space V (a) is linearly independent; (b) complete; (c) forms a basis.

1. $V=\mathbb{R}^{2}, \nu_{1}=\binom{-1}{1}, \nu_{2}=\binom{1}{1}$.
2. $V=\mathbb{R}^{2}, v_{1}=\binom{-1}{1}, v_{2}=\binom{2}{1}, v_{3}=\binom{1}{1}$.
3. $\mathrm{V}=\mathbb{R}^{3}, v_{1}=\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right), v_{2}=\left(\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right), v_{3}=\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right), v_{4}=\left(\begin{array}{c}3 \\ -5 \\ 2\end{array}\right), v_{5}=\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)$.
4. $\mathrm{V}=\mathbb{R}^{3}, v_{1}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.
5. (a) Prove that if the system of vectors u, v, w of some vector space is linearly independent, then the system of vectors $u-2 w, v+w, w$ is linearly independent as well.
(b) Prove that if the system of vectors $\mathfrak{u}, \boldsymbol{v}, \boldsymbol{w}$ of some vector space is complete, then the system of vectors $u-2 w, v+w, w$ is complete as well.
