MA 1111: Linear Algebra I
Tutorial problems, November 15, 2018

1. (a) For the vector space $\mathbb{R}^{3}$, show that the vectors

$$
e_{1}=\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right), e_{2}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), e_{3}=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)
$$

form a basis, and so do

$$
f_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), f_{2}=\left(\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right), f_{3}=\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right) .
$$

(b) For the vector space $\mathbb{R}^{3}$, find the transition matrix $M_{\mathbf{e}, \mathbf{f}}$ for the two bases from the previous question.
(c) Given that a vector has coordinates $1,4,-3$ with respect to the basis $f_{1}, f_{2}, f_{3}$, find its coordinates with respect to the basis $e_{1}, e_{2}, e_{3}$.
(d) Given that a vector has coordinates $1,4,-3$ with respect to the basis $e_{1}, e_{2}, e_{3}$, find its coordinates with respect to the basis $f_{1}, f_{2}, f_{3}$.

In the following two questions, we denote by $P_{n}$ the vector space of all polynomials in $x$ of degree at most $n$.
2. Write down the transition matrix between the bases $1, x, \ldots, x^{n}$ and $1, x+1, \ldots$, $(x+1)^{n}$ of $P_{n}$ for (a) $n=1$; (b) $n=2$; (c) $n=3$.
3. Which of the following functions from $P_{3}$ to $P_{3}$ are linear operators? Explain your answers. When a function is a linear operator, write down its matrix relative to the standard basis $1, x, x^{2}, x^{3}$.
(a) $f(x) \mapsto \frac{f(x)-f(0)}{x} ;(b) f(x) \mapsto x f^{\prime}(x)-2 f(x) ;(c) f(x) \mapsto f^{\prime \prime}(x) f^{\prime}(x)-t^{2} f^{\prime \prime \prime}(x)$.

