MA 1111: Linear Algebra I
Tutorial problems, November 22, 2018

1. The set of all complex numbers forms a 2 -dimensional vector space over real numbers with a basis $1, i$. Compute, relative to this basis, the matrix of the linear operator on that space which maps every complex number z to $(3-7 i) z$.
2. Let $\mathrm{V}=\mathbb{R}^{2}, e_{1}=\binom{1}{1}, e_{2}=\binom{2}{3}$ a basis of $\mathrm{V}, \varphi: \mathrm{V} \rightarrow \mathrm{V}$ a linear transformation whose matrix $A_{\varphi, \mathrm{e}}$ relative to the basis e_{1}, e_{2} is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
(a) Find the transition matrix $M_{e f}$ from the basis e_{1}, e_{2} to the basis $f_{1}=\binom{1}{-2}$, $f_{2}=\binom{4}{-9}$, and compute the matrix $A_{\varphi, f}$.
(b) Compute the matrix $\mathcal{A}_{\varphi, \mathbf{v}}$ of the linear transformation φ relative to the basis of standard unit vectors $v_{1}=\binom{1}{0}, v_{2}=\binom{0}{1}$.
3. Does there exist a change of basis making the matrix $A=\left(\begin{array}{ccc}3 & 0 & -1 \\ 5 & -1 & -8 \\ -1 & 1 & 4\end{array}\right)$ diagonal? Why?
4. For the matrix $A=\left(\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right)$, find a closed formula for A^{n}.
