MA 1111: Linear Algebra I

Tutorial problems, September 20, 2018

1. $(-2,0),(0,-2)$, or $(2,4)$. In general, if \mathbf{a}, \mathbf{b}, and \mathbf{c} are given points, then the fourth point is one of $\mathbf{a}+\mathbf{b}-\mathbf{c}, \mathbf{b}+\mathbf{c}-\mathbf{a}$, and $\mathbf{c}+\mathbf{a}-\mathbf{b}$. One of possible ideas is to use the parallelogram rule carefully. Another idea: the midpoint of the segment connecting (a_{1}, a_{2}) to (b_{1}, b_{2}) has coordinates $\left(\frac{a_{1}+b_{1}}{2}, \frac{a_{2}+b_{2}}{2}\right)$; use the fact that the center of a parallelogram is the midpoint of each of its diagonals.
2. We have $|\mathbf{a}|=\sqrt{9+25}=\sqrt{34},|\mathbf{b}|=\sqrt{4+1}=\sqrt{5}$, and $\mathbf{a} \cdot \mathbf{b}=6+5=11$. Therefor, $\cos \varphi=\frac{11}{\sqrt{34 \cdot 5}}=\frac{11}{\sqrt{170}}$, and $\varphi=\cos ^{-1}\left(\frac{11}{\sqrt{170}}\right)$.
3. (a) This area, as we know, is equal to the length of the vector product of these vectors. We have $\mathbf{u} \times \mathbf{v}=(4,-1,-1)$, so the area is $\sqrt{4^{2}+1+1}=\sqrt{18}=3 \sqrt{2}$. (b) This area is the absolute value of $\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})$, that is $|12-1|=11$.
4. Since $\mathbf{v} \cdot \mathbf{w}$ is a scalar, the vector product of that expression with a vector is not defined.
5. (a) Let us choose one of the vertices of that cube. There are three other vertices connected to it with an edge, at the distance 1 , three others which are other endpoints of diagonals of square faces of the cube, at the distance $\sqrt{2}$, and finally, one vertex which is the opposite vertex of the cube; the distance to that vertex is equal to $\sqrt{(\sqrt{2})^{2}+1^{2}}=\sqrt{3}$ by Pythagoras' Theorem. (b) Note that $A B C$ is an equilateral triangle with side $\sqrt{2}$, so all its angles are 60°. Alternatively: if we put the vertex A at the origin of a coordinate system, and direct the edges along the sides of the cube, we are asked to find the angles between the vectors $(1,1,0)$ and ($1,0,1$). The scalar product of those vectors is 1 , so $\cos \varphi=\frac{1}{\sqrt{2} \cdot \sqrt{2}}=\frac{1}{2}$, and $\varphi=60^{\circ}$.
