MA 1111: Linear Algebra I

Tutorial problems, October 4, 2018

1. (a) The easiest thing to do is to apply the algorithm from the lecture: take the matrix $(A \mid I)$ and bring it to the reduced row echelon form; for an invertible matrix A, the result is $\left(\mathrm{I} \mid A^{-1}\right)$. In this case, the inverse is $\left(\begin{array}{ccc}3 & -3 & 1 \\ -5 / 2 & 4 & -3 / 2 \\ 1 / 2 & -1 & 1 / 2\end{array}\right)$.
(b) If $A \mathbf{x}=\mathbf{b}$, then, multiplying by A^{-1}, we get $\mathbf{x}=A^{-1} \mathbf{b}$, so

$$
\left\{\begin{array}{l}
x_{1}=3 a-3 b+c \\
x_{2}=-\frac{5}{2} a+4 b-\frac{3}{2} c \\
x_{3}=\frac{1}{2} a-b+\frac{1}{2} c
\end{array}\right.
$$

2. Let us write down the corresponding one-row representatives of these permutations (for which we permute the columns to create the natural order in the top row): the matrix $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3\end{array}\right)$ corresponds to $2,1,5,4,3$, the matrix $\left(\begin{array}{lllll}1 & 4 & 2 & 3 & 5 \\ 2 & 1 & 5 & 3 & 4\end{array}\right)$ corresponds to $2,5,3,1,4$, and the matrix $\left(\begin{array}{lllll}5 & 3 & 1 & 4 & 2 \\ 3 & 5 & 2 & 4 & 1\end{array}\right)$ corresponds to $2,1,5,4,3$. Therefore the first and the third matrix do represent the same permutation. The permutation $2,1,5,4,3$ is even (it has 4 inversions), and the permutation $2,5,3,1,4$ is odd (it has 3 inversions).
3. Clearly, we must have $\mathfrak{i}=2$ (to have all the numbers present in the top row) and $\{j, k\}=\{3,4\}$. For the choice $\mathfrak{j}=3, k=4$, the permutation is even (since there are 8 inversions in total in the two rows), so for the other choice the permutation is odd. Answer: $i=2, j=4, k=3$.
4. (a) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, so that $A^{2}=\left(\begin{array}{cc}a^{2}+b c & b(a+d) \\ c(a+d) & d^{2}+b c\end{array}\right)$. Since $A^{2}=I$, we have $b(a+d)=c(a+d)=0$. If $a+d=0$, we have $\operatorname{tr}(A)=0$, and everything is proved. Otherwise, if $a+d \neq 0$, we have $b=c=0$, so $a^{2}=1=d^{2}$, and either $a=d=1$ or $a=d=-1$ or $a=1, d=-1$ or $a=-1, d=1$. In the first case $A=I_{2}$, in the second case $A=-I_{2}$, in the remaining two cases $\operatorname{tr}(A)=a+d=0$ (contradiction since we assumed $a+d \neq 0)$. (b) For example $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
5. Let $\left(y_{1}, y_{2}\right)$ and $\left(z_{1}, z_{2}\right)$ be two different solutions. Then $\left(y_{1}-z_{1}, y_{2}-z_{2}\right)$ is a solution to the system

$$
\left\{\begin{array}{l}
a x_{1}+b x_{2}=0 \\
c x_{1}+d x_{2}=0
\end{array}\right.
$$

Indeed, $a\left(y_{1}-z_{1}\right)+b\left(y_{2}-z_{2}\right)=a y_{1}+b y_{2}-a z_{1}-b z_{2}=e-e=0$, and the same for the second equation. This solution is different from $(0,0)$ because the original solutions were different.

