MA 1111: Linear Algebra I
Tutorial problems, October 19, 2018

1. The reduced row echelon form of the matrix $\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right)$ is the identity matrix, so the vectors form a basis.
2. There are more than two vectors, so they are not linearly independent, and do not form a basis. The first and the third form a basis, hence span \mathbb{R}^{2}, hence the three also span \mathbb{R}^{2}.
3. There are more than three vectors, so they are not linearly independent, and do not form a basis. The matrix formed by the first, the second, and the last vector has the determinant 9 , so is invertible, so its reduced row echelon form is the identity matrix, so those three vectors span \mathbb{R}^{3}, hence all the five vectors span \mathbb{R}^{3}.
4. The matrix formed by these vectors has the determinant 2 , so is invertible, so its reduced row echelon form is the identity matrix, so those three vectors form a basis.
5. (a) Suppose that $c_{1}(u-2 w)+c_{2}(v+w)+c_{3} w=0$. Since

$$
\mathrm{c}_{1}(u-2 w)+\mathrm{c}_{2}(v+w)+\mathrm{c}_{3} w=\mathrm{c}_{1} u+\mathrm{c}_{2} v+\left(-2 \mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}\right) w,
$$

and \mathfrak{u}, v, w are linearly independent, we have $\mathrm{c}_{1}=\mathrm{c}_{2}=-2 \mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}=0$, from which we deduce $c_{1}=c_{2}=c_{3}=0$.
(b) Suppose that we want to find coefficients $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$ that give

$$
c_{1}(u-2 w)+c_{2}(v+w)+c_{3} w=b .
$$

Since

$$
c_{1}(u-2 w)+c_{2}(v+w)+c_{3} w=c_{1} u+c_{2} v+\left(-2 c_{1}+c_{2}+c_{3}\right) w,
$$

we may instead solve $\mathrm{c}_{1} \mathbf{u}+\mathrm{c}_{2} v+\left(-2 \mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}\right) w=\mathrm{b}$. By assumption, the system of vectors u, v, w is complete, so we can write $a_{1} u+a_{2} v+a_{3} w=b$, and it is enough to set $c_{1}=a_{1}, c_{2}=a_{2}$, and $c_{3}=2 c_{1}-c_{2}+a_{3}$.

