MA 1111: Linear Algebra I
Tutorial problems, November 15, 2018

1. (a) $M_{e f}=\left(\begin{array}{ccc}0 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & 1 & 3\end{array}\right)^{-1}\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & -1 & -2 \\ 1 & 2 & -1\end{array}\right)=\left(\begin{array}{ccc}0 & 3 & -5 \\ 1 & -13 & 15 \\ 0 & 6 & -7\end{array}\right)$.
(b) By a result proved in class, the column of those coordinates is

$$
M_{\mathrm{e}, \mathrm{f}}\left(\begin{array}{c}
1 \\
4 \\
-3
\end{array}\right)=\left(\begin{array}{c}
27 \\
-96 \\
45
\end{array}\right)
$$

(c) By a result proved in class, the column of those coordinates is

$$
M_{f, e}\left(\begin{array}{c}
1 \\
4 \\
-3
\end{array}\right)=M_{\mathrm{e}, \mathrm{f}}^{-1}\left(\begin{array}{c}
1 \\
4 \\
-3
\end{array}\right)=\left(\begin{array}{c}
-25 / 9 \\
-22 / 9 \\
-5 / 3
\end{array}\right) .
$$

2. Observe that $1=1 \cdot 1, x+1=1 \cdot 1+1 \cdot x,(x+1)^{2}=1 \cdot 1+2 \cdot x+1 \cdot x^{2}$, and $(x+1)^{3}=1 \cdot 1+3 \cdot x+3 \cdot x^{2}+1 \cdot x^{3}$. Therefore, the transition matrices are

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right),
\end{gathered}
$$

and

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3. (a) and (b) are linear operators; by direct inspection, sums are mapped to sums, and scalar multiples are mapped to scalar multiples. (c) is not a linear operator; $f(t)=t^{2}$ is mapped to $2 \cdot 2 t=4 t$, and $-t^{2}$ is mapped to $(-2) \cdot(-2 t)=4 t$ as well, even though its image should be the opposite vector.

The matrix of (a) is $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$, and the matrix of (b) is $\left(\begin{array}{cccc}-2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

