MA 1111: Linear Algebra I

Tutorial problems, November 22, 2018

1. Let us determine what this linear operator does to the basis vectors: $1 \mapsto(3-7 i) \cdot 1=3-7 i)$, $\mathfrak{i} \mapsto(3-7 \mathfrak{i}) \cdot \mathfrak{i}=7+3 \mathfrak{i}$. This instantly leads to the matrix $\left(\begin{array}{cc}3 & 7 \\ -7 & 3\end{array}\right)$.
2. (a) We have $M_{\mathbf{e}, \mathrm{f}}=\left(e_{1} \mid e_{2}\right)^{-1}\left(f_{1} \mid f_{2}\right)=\left(\begin{array}{cc}7 & 30 \\ -3 & -13\end{array}\right)$. Therefore, we have

$$
A_{\varphi, \mathrm{f}}=M_{\mathrm{e}, \mathrm{f}}^{-1} A_{\varphi, \mathrm{e}} M_{\mathrm{e}, \mathrm{f}}=\left(\begin{array}{cc}
171 & 731 \\
-40 & -171
\end{array}\right)
$$

(b) We clearly have $M_{v, e}=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$, therefore $M_{e, v}=M_{v, e}^{-1}=\left(\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right)$. Therefore,

$$
A_{\varphi, \mathrm{v}}=M_{\mathrm{e}, \mathrm{v}}^{-1} A_{\varphi, \mathrm{e}} M_{\mathrm{e}, \mathrm{v}}=\left(\begin{array}{cc}
5 & -3 \\
8 & -5
\end{array}\right)
$$

3. We have $\operatorname{det}\left(A-c I_{3}\right)=-c^{3}+6 c^{2}-12 c+8=-(c-2)^{3}$. Therefore, all eigenvalues are equal to 2 . Looking at the eigenvector condition $\left(A-2 I_{3}\right) x=0$, we see that every eigenvector is proportional to $\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$, so there is no basis of eigenvectors.
4. We have $\operatorname{det}\left(A-a I_{2}\right)=(a-3)(a-2)-2=a^{2}-5 a+4=(a-1)(a-4)$. This means that we should expect the linear map given by this matrix to have, relative to some basis, the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)$. To find the corresponding basis, we solve the equations $A x=x$ and $A x=4 x$. Solving these, we find solutions $\binom{-1}{1}$ and $\binom{2}{1}$ respectively. Thus, if we put $C=\left(\begin{array}{cc}-1 & 2 \\ 1 & 1\end{array}\right)$, we have $C^{-1} A C=\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)$, and $C^{-1} A^{n} C=\left(\begin{array}{cc}1 & 0 \\ 0 & 4^{n}\end{array}\right)$. Therefore,

$$
A^{n}=C\left(\begin{array}{cc}
1 & 0 \\
0 & 4^{n}
\end{array}\right) C^{-1}=\left(\begin{array}{cc}
\frac{2 \cdot 4^{n}+1}{n^{3}-1} & \frac{2 \cdot 4^{n}-2}{\frac{4^{n}}{3}} \\
\frac{4^{n}+2}{3}
\end{array}\right)
$$

