MA 1112: Linear Algebra II
Selected answers/solutions to the assignment for January 28

1. (a) $\operatorname{rk}(A)=1$ (all columns are the same, so there is just one linearly independent column), eigenvectors are 0 and 3 , there are two linearly independent eigenvectors $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$ for the first of them (and every eigenvector is their linear combination), and every eigenvector for the second of them is proportional to $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Since there are three linearly independent eigenvectors, there is a change of coordinates making this matrix diagonal.
(b) $\operatorname{rk}(A)=3$, eigenvectors are 2 and 3 , every eigenvector for the first one is proportional to $\left(\begin{array}{c}-4 \\ -2 \\ 1\end{array}\right)$, every eigenvector for the second one is proportional to $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. Since we do not have three linearly independent eigenvectors, there is no change of coordinates making this matrix diagonal.
(c) $\operatorname{rk}(A)=3$, eigenvectors are $-2,1$, and 3 , every eigenvector for the first one is proportional to $\left(\begin{array}{c}1 / 4 \\ -1 / 2 \\ 1\end{array}\right)$, every eigenvector for the second one is proportional to $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, every eigenvector for the third one is proportional to $\left(\begin{array}{c}1 / 9 \\ 1 / 3 \\ 1\end{array}\right)$. There are three linearly independent eigenvectors, so there is a change of coordinates making this matrix diagonal.
2. The kernel of our matrix consists of vectors
for which $x_{1}=-x_{2}$, Overall, all vec-
tors in the kernel are proportional to $\left(\begin{array}{c}1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1\end{array}\right)$, so the nullity of A is 1 , and $\operatorname{rk}(\mathrm{A})=\operatorname{dim}(\mathrm{V})-1=5$.
3. Suppose that $p(t)$ is an eigenvector, so that $\varphi(p(t))=c p(t)$. Note that $\varphi(p(t))=p^{\prime}(t)+3 p^{\prime \prime}(t)$ is a polynomial of degree less than the degree of $\mathfrak{p}(\mathrm{t})$, so it can be proportional to $\mathfrak{p}(\mathrm{t})$ only if it is equal to zero. Thus, the only eigenvalue is zero. Also, if $p^{\prime}(t)+3 p^{\prime \prime}(t)=0$, we see that $\left(p(t)+3 p^{\prime}(t)\right)^{\prime}=0$, so $p(t)+3 p^{\prime}(t)$ is a constant polynomial. Since $3 p^{\prime}(t)$ is of degree less than the degree of $p(t)$, this means that $p(t)$ must be a constant polynomial itself, or else its leading term will not cancel. Thus, φ has only one eigenvector, so does not admit a basis of eigenvectors, and therefore there is no basis of V relative to which the matrix of φ is diagonal.
4. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathrm{m}}$ be columns of A. Since $\operatorname{rk}(A)=1$, there is at least one nonzero column. Assume that $\mathbf{a}_{l} \neq 0$. For every $k \neq l$, the column \mathbf{a}_{k} has to be linearly dependent with \mathbf{a}_{l} because the rank of our matrix is $1: x_{k} \mathbf{a}_{k}+y_{k} \mathbf{a}_{l}=0$. Since $\mathbf{a}_{l} \neq 0$, we have $x_{k} \neq 0$ (otherwise $x_{k}=y_{k}=0$, and we don't have a nontrivial linear combination). Thus, \mathbf{a}_{k} is proportional to $\mathbf{a}_{l}, \mathbf{a}_{k}=z_{k} \mathbf{a}_{l}, z_{k}=-y_{k} / x_{k}$. Denoting $B=\mathbf{a}_{l}$, $C=\left(z_{1}, z_{2}, \ldots, z_{l-1}, 1, z_{l+1}, \ldots, z_{m}\right)$, we get $A=B C$.
5. We have $\operatorname{rk}(\beta \circ \alpha) \leqslant \operatorname{rk}(\beta)$ because clearly we have an inclusion of subspaces $\operatorname{Im}(\beta \circ \alpha) \subset \operatorname{Im}(\beta)$: every vector of the form $\beta(\alpha(u))$ with $u \in U$ is automatically a vector of the form $\beta(v)$ with $v \in \mathrm{~V}$. Also, we have $\operatorname{rk}(\beta \circ \alpha) \leqslant \operatorname{rk}(\alpha)$ because we can consider the map of vector spaces from $\operatorname{Im}(\alpha)$ to W induced by β; by the rank-nullity theorem, the rank of this map (equal to the rank of $\beta \circ \alpha$) does not exceed $\operatorname{dim} \operatorname{Im}(\alpha)=\operatorname{rk}(\alpha)$.
