MA 1112: Linear Algebra II
Selected answers/solutions to the assignment for February 4

1. The reduced column echelon form of the matrix whose columns are the spanning vectors of U_{1} is

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-5 & 6 & 0 \\
-7 & 9 & 0
\end{array}\right)
$$

and its first two nonzero columns can be taken as a basis.
The reduced column echelon form of the matrix whose columns are the spanning vectors of U_{2} is

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{16}{5} & \frac{17}{5} & -\frac{4}{5} & 0
\end{array}\right)
$$

and its first three nonzero columns can be taken as a basis.
2. The intersection is described by the system of equations

$$
a_{1} g_{1}+a_{2} g_{2}-b_{1} h_{1}-b_{2} h_{2}-b_{3} h_{3}=0
$$

where we denote by g_{1}, g_{2} the basis of U_{1} we found, and by h_{1}, h_{2}, h_{3} the basis of U_{2}. The matrix of this system of equations is

$$
\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
-5 & 6 & 0 & 0 & -1 \\
-7 & 9 & \frac{16}{5} & -\frac{17}{5} & \frac{4}{5}
\end{array}\right)
$$

and it reduced row echelon form is

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 2 & \\
0 & 1 & 0 & 0 & & \frac{3}{2} \\
0 & 0 & 1 & 0 & 2 & \\
0 & 0 & 0 & 1 & \frac{3}{2} &
\end{array}\right)
$$

so b_{3} is a free variable. Setting $b_{3}=t$, we obtain $a_{1}=-2 t, a_{2}=-\frac{3}{2} t$. The corresponding basis vector $a_{1} g_{1}+a_{2} g_{2}$ is $\left(\begin{array}{c}-2 \\ -\frac{3}{2} \\ 1 \\ \frac{1}{2}\end{array}\right)$.
3. Reducing the basis vectors of U_{1} using the basis vector we just found, we obtain the matrix

$$
\left(\begin{array}{cc}
0 & 0 \\
-\frac{3}{4} & 1 \\
-\frac{9}{2} & 6 \\
-\frac{27}{4} & 9
\end{array}\right)
$$

and the reduced column echelon form of this matrix is easily seen to be

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
6 & 0 \\
9 & 0
\end{array}\right)
$$

so the vector $\left(\begin{array}{l}0 \\ 1 \\ 6 \\ 9\end{array}\right)$ can be taken as the relative basis vector.
4. Reducing the basis vectors of U_{2} using the basis vector we found, we obtain the matrix

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
-\frac{3}{4} & 1 & 0 \\
\frac{1}{2} & 0 & 1 \\
-\frac{59}{20} & \frac{17}{5} & -\frac{4}{5}
\end{array}\right)
$$

and the reduced column echelon form of this matrix is manifestly

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{17}{5} & -\frac{4}{5} & 0
\end{array}\right)
$$

so its two nonzero columns can be taken as the relative basis.
5. For $\mathrm{U}=\operatorname{span}\left(v_{1}, v_{2}\right)$ to be invariant, it is necessary and sufficient to have $\varphi\left(v_{1}\right), \varphi\left(v_{2}\right) \in \mathrm{U}$. Indeed, this condition is necessary because we must have $\varphi(\mathrm{U}) \subset \mathrm{U}$, and it is sufficient because each vector of U is a linear combination of v_{1} and v_{2}.

We have $\varphi\left(v_{1}\right)=A v_{1}=\left(\begin{array}{c}-5 \\ 10 \\ -13\end{array}\right)$ and $\varphi\left(v_{2}\right)=A v_{2}=\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right)$. It just remains to see if there are scalars x, y such that $\varphi\left(v_{1}\right)=x v_{1}+y v_{2}$ and scalars z, t such that $\varphi\left(v_{2}\right)=z v_{1}+t v_{2}$. Solving the corresponding systems of linear equations, we see that there are solutions: $\varphi\left(v_{1}\right)=2 v_{1}-3 v_{2}$ and $\varphi\left(v_{2}\right)=3 v_{1}+2 v_{2}$. Therefore, this subspace is invariant.

