1. In this case, $\varphi^{2}=0, \operatorname{rk}(\varphi)=1, \operatorname{rk}\left(\varphi^{k}\right)=0$ for $k \geqslant 2, \operatorname{null}(\varphi)=1, \operatorname{null}\left(\varphi^{k}\right)=2$ for $k \geqslant 2$. Moreover, $\operatorname{Ker}(\varphi)=\left\{\binom{\mathrm{t}}{-\mathrm{t}}\right\}$.

We have a sequence of subspaces $V=\operatorname{Ker} \varphi^{2} \supset \operatorname{Ker} \varphi \supset\{0\}$. The first one relative to the second one is one-dimensional (since null $\varphi^{2}-\operatorname{null} \varphi=1$). Putting $t=1$ in the formula above, we get the vector $\binom{1}{-1}$ that forms a basis of the kernel, and for the relative basis we can take the basis vector of \mathbb{R}^{2} making up for the missing pivot, that is $f=\binom{0}{1}$. This vector gives rise to a thread $f=\binom{0}{1}, \varphi(f)=\binom{1}{-1}$ of length 2. Since our space is 2-dimensional, this thread forms a basis.
2. In this case, $\varphi^{2}=0, \operatorname{rk} \varphi=1, \operatorname{rk} \varphi^{k}=0$ for $k \geqslant 2, \operatorname{null}(\varphi)=2, \operatorname{null}\left(\varphi^{k}\right)=3$ for $k \geqslant 2$. Moreover, $\operatorname{Ker}(\varphi)=\left\{\left(\begin{array}{c}\frac{4 s+6 t}{3} \\ s \\ t\end{array}\right)\right\}$.

We have a sequence of subspaces $V=\operatorname{Ker} \varphi^{2} \supset \operatorname{Ker} \varphi \supset\{0\}$. The first one relative to the second one is one-dimensional (since null $\varphi^{2}-\operatorname{null} \varphi=1$). The kernel of φ has a basis $\left(\begin{array}{c}4 / 3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}6 / 3 \\ 0 \\ 1\end{array}\right)$ (corresponding to the values $s=1, t=0$ and $s=0, t=1$ of the free variables), and after computing the reduced column echelon form, we see that for a relative basis we may take the vector $f=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. This vector gives rise to a thread $f, \varphi(f)=\left(\begin{array}{c}36 \\ 36 \\ -6\end{array}\right)$. It remains to find a basis of $\operatorname{Ker}(\varphi)$ relative to the span of $\varphi(f)$. Column reduction of the basis of $\operatorname{Ker}(\varphi)$ by $\varphi(f)$ leaves us with the vector $g=\left(\begin{array}{c}0 \\ 1 \\ -2 / 3\end{array}\right)$. Overall, the vectors $f, \varphi(f), g$ form a basis of V consisting of two threads, one of length $2(\mathrm{f}, \varphi(\mathrm{f}))$ and the other one of length $1(\mathrm{~g})$.
3. In this case, $\varphi^{2}=\left(\begin{array}{ccc}6 & 4 & 0 \\ -9 & -6 & 0 \\ 0 & 0 & 0\end{array}\right), \varphi^{3}=0, \operatorname{rk} \varphi=2, \operatorname{rk} \varphi^{2}=1, \operatorname{rk} \varphi^{k}=0$ for $k \geqslant 3$, $\operatorname{null}(\varphi)=1, \operatorname{null}\left(\varphi^{2}\right)=2, \operatorname{null}\left(\varphi^{k}\right)=3$ for $k \geqslant 3$.

We have a sequence of subspaces $V=\operatorname{Ker} \varphi^{3} \supset \operatorname{Ker} \varphi^{2} \supset \operatorname{Ker} \varphi \supset\{0\}$. The first one relative to the second one is one-dimensional (null $\varphi^{3}-\operatorname{null} \varphi^{2}=1$). We have $\operatorname{Ker}\left(\varphi^{2}\right)=\left(\begin{array}{c}-2 / 3 s \\ s \\ t\end{array}\right)$, so it has a basis of vectors $\left(\begin{array}{c}-2 / 3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ (corresponding to the value $s=1, t=0$ and $s=0, t=1$ of the free variables respectively), and after computing the reduced column echelon form we see that for a relative basis we may take the vector $\mathrm{f}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. We have $\varphi(\mathrm{f})=\left(\begin{array}{c}-24 \\ 36 \\ 2\end{array}\right), \varphi^{2}(\mathrm{f})=\left(\begin{array}{c}4 \\ -6 \\ 0\end{array}\right)$, and this thread of length 3 forms a basis of our three-dimensional space V.
4. In this case, $\varphi^{2}=0, \operatorname{rk}(\varphi)=2, \operatorname{rk}\left(\varphi^{k}\right)=0$ for $k \geqslant 2, \operatorname{dim} \operatorname{Ker}(\varphi)=2, \operatorname{dim} \operatorname{Ker}\left(\varphi^{k}\right)=4$ for
$k \geqslant 2$. Moreover, $\operatorname{Ker}(\varphi)=\left\{\left(\begin{array}{c}-2 s \\ s \\ -2 t \\ t\end{array}\right)\right\}$.
We have a sequence of subspaces $\mathrm{V}=\operatorname{Ker}\left(\varphi^{2}\right) \supset \operatorname{Ker}(\varphi) \supset\{0\}$. The first one relative to the second one is two-dimensional $\left(\operatorname{null}\left(\varphi^{2}\right)-\operatorname{null}(\varphi)=2\right)$. Clearly, the vectors $\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}0 \\ 0 \\ -2 \\ 1\end{array}\right)$ (corresponding to the values $s=1, t=0$ and $s=0, t=1$ of the free variables respectively) form a basis of $\operatorname{Ker} \varphi$, and after computing the reduced column echelon form we see that for a relative basis we may take the vectors $f_{1}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $f_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$. These vectors give rise to threads f_{1}, $\varphi\left(f_{1}\right)=\left(\begin{array}{c}4 \\ -4 \\ 4 \\ -2\end{array}\right)$ and $f_{2}, \varphi\left(f_{2}\right)=\left(\begin{array}{c}4 \\ -6 \\ 8 \\ -4\end{array}\right)$. These two threads together contain four vectors, and we have a basis.
5. The transformation φ that multiplies every vector by A satisfies $\varphi^{N}=0$, so the result from class applies; let us find a basis for φ consisting of several threads. Each thread is of length at most n, since a basis consists of n vectors altogether. Clearly, all vectors from a thread of length l are mapped to zero by φ^{l} : the last vector is mapped to zero by φ, the previous one - by φ^{2} (since φ maps it to the last one, and then one more application of φ maps it to zero), etc. It follows that every individual basis vector is mapped to zero by φ^{n}, and so is every their combination - it follows that all vectors are mapped to 0 , so $A^{n}=0$.

