MA 1112: Linear Algebra II Selected answers/solutions to the assignment for February 11, 2019

 $\begin{array}{l} \mbox{1. In this case, } \phi^2 = 0, \mbox{ rk}(\phi) = 1, \mbox{ rk}(\phi^k) = 0 \mbox{ for } k \geqslant 2, \mbox{ null}(\phi) = 1, \mbox{ null}(\phi^k) = 2 \mbox{ for } k \geqslant 2. \\ \mbox{ Moreover, } \mbox{ Ker}(\phi) = \{ \begin{pmatrix} t \\ -t \end{pmatrix} \}. \end{array}$

We have a sequence of subspaces $V = \operatorname{Ker} \varphi^2 \supset \operatorname{Ker} \varphi \supset \{0\}$. The first one relative to the second one is one-dimensional (since null $\varphi^2 - \operatorname{null} \varphi = 1$). Putting t = 1 in the formula above, we get the vector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ that forms a basis of the kernel, and for the relative basis we can take the basis vector of \mathbb{R}^2 making up for the missing pivot, that is $f = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. This vector gives rise to a thread $f = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\varphi(f) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ of length 2. Since our space is 2-dimensional, this thread forms a basis. 2. In this case, $\varphi^2 = 0$, rk $\varphi = 1$, rk $\varphi^k = 0$ for $k \ge 2$, null $(\varphi) = 2$, null $(\varphi^k) = 3$ for $k \ge 2$. Moreover, $\operatorname{Ker}(\varphi) = \{\begin{pmatrix} \frac{4s+6t}{3} \\ s \\ t \end{pmatrix}\}$.

We have a sequence of subspaces $V = \operatorname{Ker} \varphi^2 \supset \operatorname{Ker} \varphi \supset \{0\}$. The first one relative to the second one is one-dimensional (since null $\varphi^2 - \operatorname{null} \varphi = 1$). The kernel of φ has a basis $\begin{pmatrix} 4/3 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 6/3 \\ 0 \\ 1 \end{pmatrix}$ (corresponding to the values s = 1, t = 0 and s = 0, t = 1 of the free variables), and after computing the reduced column echelon form, we see that for a relative basis we may take the vector $f = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

This vector gives rise to a thread $f, \varphi(f) = \begin{pmatrix} 36\\ 36\\ -6 \end{pmatrix}$. It remains to find a basis of $\operatorname{Ker}(\varphi)$ relative to the span of $\varphi(f)$. Column reduction of the basis of $\operatorname{Ker}(\varphi)$ by $\varphi(f)$ leaves us with the vector $g = \begin{pmatrix} 0\\ 1\\ -2/3 \end{pmatrix}$. Overall, the vectors $f, \varphi(f), g$ form a basis of V consisting of two threads, one of length 2 $(f, \varphi(f))$ and the other one of length 1 (g).

 $\begin{array}{l} \text{length 2 (1, \phi(1)) and the other of length 1 (g).} \\ \textbf{3. In this case, } \phi^2 = \begin{pmatrix} 6 & 4 & 0 \\ -9 & -6 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \phi^3 = 0, \ \mathrm{rk} \, \phi = 2, \ \mathrm{rk} \, \phi^2 = 1, \ \mathrm{rk} \, \phi^k = 0 \ \mathrm{for} \ k \geqslant 3, \\ \mathrm{null}(\phi) = 1, \ \mathrm{null}(\phi^2) = 2, \ \mathrm{null}(\phi^k) = 3 \ \mathrm{for} \ k \geqslant 3. \end{array}$

We have a sequence of subspaces $V = \operatorname{Ker} \varphi^3 \supset \operatorname{Ker} \varphi^2 \supset \operatorname{Ker} \varphi \supset \{0\}$. The first one relative to the second one is one-dimensional (null $\varphi^3 - \operatorname{null} \varphi^2 = 1$). We have $\operatorname{Ker}(\varphi^2) = \begin{pmatrix} -2/3s \\ s \\ t \end{pmatrix}$, so it has

a basis of vectors $\begin{pmatrix} -2/3\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ (corresponding to the value s = 1, t = 0 and s = 0, t = 1 of the free variables respectively), and after computing the reduced column echelon form we see that for a relative basis we may take the vector $f = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$. We have $\varphi(f) = \begin{pmatrix} -24\\36\\2 \end{pmatrix}$, $\varphi^2(f) = \begin{pmatrix} 4\\-6\\0 \end{pmatrix}$, and this thread of length 3 forms a basis of our three-dimensional space V.

4. In this case, $\phi^2 = 0$, $\operatorname{rk}(\phi) = 2$, $\operatorname{rk}(\phi^k) = 0$ for $k \ge 2$, $\dim \operatorname{Ker}(\phi) = 2$, $\dim \operatorname{Ker}(\phi^k) = 4$ for

 $k \ge 2$. Moreover, $\operatorname{Ker}(\varphi) = \{ \begin{pmatrix} -2s \\ s \\ -2t \\ t \end{pmatrix} \}$.

We have a sequence of subspaces $V = \operatorname{Ker}(\varphi^2) \supset \operatorname{Ker}(\varphi) \supset \{0\}$. The first one relative to the second one is two-dimensional $(\operatorname{null}(\varphi^2) - \operatorname{null}(\varphi) = 2)$. Clearly, the vectors $\begin{pmatrix} -2\\ 1\\ 0\\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0\\ 0\\ -2\\ 1 \end{pmatrix}$

(corresponding to the values s = 1, t = 0 and s = 0, t = 1 of the free variables respectively) form a basis of Ker φ , and after computing the reduced column echelon form we see that for a relative

basis we may take the vectors $f_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and $f_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$. These vectors give rise to threads f_1 ,

$$\varphi(f_1) = \begin{pmatrix} 4 \\ -4 \\ 4 \\ -2 \end{pmatrix}$$
 and f_2 , $\varphi(f_2) = \begin{pmatrix} 4 \\ -6 \\ 8 \\ -4 \end{pmatrix}$. These two threads together contain four vectors, and we

have a basis.

5. The transformation φ that multiplies every vector by A satisfies $\varphi^{N} = 0$, so the result from class applies; let us find a basis for φ consisting of several threads. Each thread is of length at most n, since a basis consists of n vectors altogether. Clearly, all vectors from a thread of length l are mapped to zero by φ^{l} : the last vector is mapped to zero by φ , the previous one — by φ^{2} (since φ maps it to the last one, and then one more application of φ maps it to zero), etc. It follows that every individual basis vector is mapped to zero by φ^{n} , and so is every their combination — it follows that all vectors are mapped to 0, so $A^{n} = 0$.