1. (a) The characteristic polynomial of A is $t^{2}-t-2=(t-2)(t+1)$, so the eigenvalues are 2 and -1 . We have $A-2 I=\left(\begin{array}{cc}-2 & 1 \\ 2 & -1\end{array}\right)$, and $A+I=\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right)$; both of these matrices have the rank equal to 1 , the kernel of the first one is spanned by the vector $\binom{1}{2}$, and the kernel of the second one is spanned by the vector $\binom{1}{-1}$. Since our vector space is two-dimensional, each of these vectors can only give rise to a thread of length 1, and they form a basis. The Jordan normal form of our matrix is $\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)$.
(b) The characteristic polynomial of \mathcal{A} is $t^{2}-2 t+1=(t-1)^{2}$, so the only eigenvalue is 1 . We have $A-I=\left(\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right)$, and this matrix evidently is of rank 1 . Also, $(A-I)^{2}=0$, so there is a stabilising sequence of subspaces $\operatorname{Ker}(A-I) \subset \operatorname{Ker}(A-I)^{2}=V$. The dimension gap between these is equal to 1 , and we have to find a relative basis. The kernel of $A-I$ is spanned by the vector $\binom{1}{1}$, and for the relative basis we can take the vector $f=\binom{0}{1}$ which makes up for the missing pivot. This vector gives rise to a thread $f,(A-I) f=\binom{1}{1}$, and the Jordan normal form $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.
2. (a) The characteristic polynomial of A is $8-12 t+6 t^{2}-t^{3}=(2-t)^{3}$, so the only eigenvalue is 2. We have $\mathrm{B}=\mathrm{A}-2 \mathrm{I}=\left(\begin{array}{ccc}2 & 9 & -5 \\ -4 & -10 & 6 \\ -6 & -13 & 8\end{array}\right), \mathrm{B}^{2}=\left(\begin{array}{ccc}-2 & -7 & 4 \\ -4 & -14 & 8 \\ -8 & -28 & 16\end{array}\right), \mathrm{B}^{3}=0$, so there is a stabilising sequence of subspaces $\operatorname{Ker} B \subset \operatorname{Ker} B^{2} \subset \operatorname{Ker} B^{3}=V$. The dimension gap between the latter two is equal to 1 . Let us describe $\operatorname{Ker} B^{2}$. It consists of the vectors $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ with $-2 x-7 y+4 z=0$, so the basis is formed by the vectors $\left(\begin{array}{c}-7 / 2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$; computing the reduced column echelon form of the corresponding matrix gives us the relative basis vector $f=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ making up for the missing pivot. We have a thread $f, B f=\left(\begin{array}{c}-5 \\ 6 \\ 8\end{array}\right), B^{2} f=\left(\begin{array}{c}4 \\ 8 \\ 16\end{array}\right)$; the Jordan normal form of our matrix is $\left(\begin{array}{lll}2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2\end{array}\right)$.
3. The characteristic polynomial of A is $2-5 t+4 t^{2}-t^{3}=(1-t)^{2}(2-t)$, so the eigenvalues are 1 and 2. Furthermore, $\operatorname{rk}(A-I)=2, \operatorname{rk}\left((A-I)^{2}\right)=1, \operatorname{rk}(A-2 I)=2, \operatorname{rk}(A-2 I)^{2}=2$. Thus, the kernels of powers of $A-2 I$ stabilise instantly, so we should expect a thread of length 1 for the eigenvalue 2, whereas the kernels of powers of \mathcal{A} - I do not stabilise for at least two steps, so that would give a thread of length at least 2, hence a thread of length 2 because our space is 3 -dimensional. To determine the basis of $\operatorname{Ker}(A-2 I)$, we solve the system $(A-2 I) v=0$ and obtain
a vector $f=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$. To deal with the eigenvalue 1 , we see that the kernel of $A-I$ is spanned by the vector $\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$, and the kernel of $(A-I)^{2}=\left(\begin{array}{ccc}0 & 0 & 0 \\ -2 & -7 & 4 \\ -4 & -14 & 8\end{array}\right)$ is spanned by the vectors $\left(\begin{array}{c}-7 / 2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$. Reducing the latter vectors using the former one, we end up with the vector $e=\left(\begin{array}{c}0 \\ 1 \\ 7 / 4\end{array}\right)$, which gives rise to a thread $e,(A-I) e=\left(\begin{array}{c}-1 / 4 \\ 1 / 2 \\ 3 / 4\end{array}\right)$. Overall, a Jordan basis is given by $f, e,(A-I) e$, and the Jordan normal form of our matrix is $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$. has a block of size 2 with 1 on the diagonal, and a block of size 1 with 2 on the diagonal.
4. The characteristic polynomial of A is $t^{4}-t^{3}$, so the eigenvalues are 0 and 1 . For the eigenvalue 0, we have $A^{2}=\left(\begin{array}{cccc}28 & 35 & 18 & 41 \\ 30 & 40 & 20 & 45 \\ -116 & -150 & -76 & -172 \\ 6 & 8 & 4 & 9\end{array}\right), \operatorname{rk}\left(A^{2}\right)=2$, and $A^{3}=\left(\begin{array}{cccc}-8 & 8 & 0 & -4 \\ -10 & 10 & 0 & -5 \\ 36 & -36 & 0 & 18 \\ -2 & 2 & 0 & -1\end{array}\right)$,
$\operatorname{rk}\left(A^{3}\right)=1$, so there is a stabilising sequence of subspaces $\operatorname{Ker} A \subset \operatorname{Ker} A^{2} \subset \operatorname{Ker} A^{3}$. At this points the kernels should stabilize, since we also have an eigenvector with the eigenvalue 1 , and our space is 4 -dimensional. For the eigenvalue 0 , we should find a basis of $\operatorname{Ker} \boldsymbol{A}^{3}$ relative to $\operatorname{Ker} \boldsymbol{A}^{2}$. The former space consists of all vectors $\left(\begin{array}{l}x \\ y \\ z \\ t\end{array}\right)$ with $-2 x+2 y-t=0$ and therefore has a basis of vectors $\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{c}-1 / 2 \\ 0 \\ 0 \\ 1\end{array}\right)$, whereas the latter has a basis of two vectors $\left(\begin{array}{c}-2 / 7 \\ -2 / 7 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-13 / 14 \\ -3 / 7 \\ 0 \\ 1\end{array}\right)$.
Reducing the first set of vectors modulo the second one, we end up with the vector $f=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$, for which we have $A f=\left(\begin{array}{c}13 \\ 14 \\ -52 \\ 2\end{array}\right), A^{2} f=\left(\begin{array}{c}18 \\ 20 \\ -76 \\ 4\end{array}\right)$. It remains to find an eigenvector with the eigenvalue 1; for such an eigenvector we can take $e=\left(\begin{array}{c}4 \\ 5 \\ -18 \\ 1\end{array}\right)$. The vectors $f, A f, A^{2} f, e$ form a Jordan basis, and the Jordan normal form is $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
