MA 1112: Linear Algebra II
Selected answers/solutions to the assignment for March 11, 2019

1. The characteristic polynomial of

$$
\left(\begin{array}{lll}
-3 & -1 & 0 \\
-1 & -1 & 0 \\
-1 & -2 & 1
\end{array}\right)
$$

is $-t^{3}-3 t^{2}+2 t+2=-(t-1)\left(t^{2}+4 t+2\right)$, the characteristic polynomial of

$$
\left(\begin{array}{ccc}
9 & 5 & 2 \\
-16 & -9 & -4 \\
2 & 1 & 1
\end{array}\right)
$$

is $-t^{3}+t^{2}+t-1=-(t-1)^{2}(t+1)$, the characteristic polynomial of

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

is $(t-1)^{3}$, the characteristic polynomial of

$$
\left(\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

is $(t-2)^{3}$, the characteristic polynomial of

$$
\left(\begin{array}{ccc}
-2 & -4 & 16 \\
0 & 2 & 0 \\
-1 & -1 & 6
\end{array}\right)
$$

is also $(t-2)^{3}$, but if we subtract $2 I$ from the latter two matrices, we get a matrix of rank 2 and a matrix of rank 1, so they are not similar. Finally,

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

has the characteristic polynomial $-(t-1)^{2}(t+1)$, which is the same as the one of the second matrix. The eigenvalue -1 leads to just one block of size 1 . To investigate the what happens for the eigenvalue 1 , we subtract the identity matrix from each of those matrices. The result is of rank 2 , so each of these matrices has a Jordan block of size two for that eigenvalue. Thus, the two matrices have the same Jordan form and are similar.
2. (a) The characteristic polynomial of B is $(t-2)^{2}$, so both eigenvalues are equal to 2 . We have $B-2 I=\left(\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right)$, and it is immediate to see that every eigenvector is proportional to $\binom{1}{-1}$.
(b) We should have one thread of length 2, so we start with a vector not proportional to $\binom{1}{-1}$, for example, $v=\binom{0}{1}$ compensating for the missing pivot. Then $(B-2 I) v=\binom{-1}{1}$, and these two matrices form a Jordan basis. The matrix C is $\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$.
(c) We have $\mathrm{C}^{-1} \mathrm{BC}=\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right)$, so $\mathrm{B}=\mathrm{C}\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right) \mathrm{C}^{-1}$ and

$$
B^{n}=C\left(\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right)^{n} C^{-1}=C\left(\begin{array}{cc}
2^{n} & 0 \\
n 2^{n-1} & 2^{n}
\end{array}\right)^{n} C^{-1}=\left(\begin{array}{cc}
2^{n}-n 2^{n-1} & -n 2^{n-1} \\
n 2^{n-1} & 2^{n}+n 2^{n-1}
\end{array}\right)
$$

Finally, if we let $v_{k}=\binom{x_{k}}{y_{k}}$, then $v_{k+1}=B v_{k}$, so $v_{n}=B^{n} v_{0}=\binom{2^{n}+4 n 2^{n-1}}{-52^{n}-4 n 2^{n-1}}$.
3. Let $v_{k}=\binom{a_{k}}{a_{k+1}}$, then $v_{k+1}=B v_{k}$, where $B=\left(\begin{array}{cc}0 & 1 \\ -49 & 14\end{array}\right)$. Both eigenvalues of B are equal to 7. We take the vector $v=\binom{0}{1}$ outside the kernel of $\mathrm{B}-7 \mathrm{I}$ that would compensate for the missing pivot; we have $(\mathrm{B}-7 \mathrm{I}) v=\binom{1}{7}$, so the columns of $\mathrm{C}=\left(\begin{array}{ll}0 & 1 \\ 1 & 7\end{array}\right)$ form a Jordan basis. Thus, $C^{-1} B C=\left(\begin{array}{ll}7 & 0 \\ 1 & 7\end{array}\right)$, and

$$
B^{n}=C\left(\begin{array}{ll}
7 & 0 \\
1 & 7
\end{array}\right)^{n} C^{-1}=\left(\begin{array}{cc}
7^{n}-n 7^{n} & n 7^{n-1} \\
-n 7^{n+1} & 7^{n}+n 7^{n}
\end{array}\right)
$$

Finally, $v_{n}=B^{n}\binom{-1}{1}=\binom{-7^{n}+n 7^{n}+n 7^{n-1}}{n 7^{n+1}+7^{n}+n 7^{n}}$, so $a_{n}=-7^{n}+n 7^{n}+n 7^{n-1}$.
4. (a) Expanding A_{n} along the first row, and then expanding the second cofactor along the first column, we get precisely the recurrent relation $\operatorname{det}\left(A_{n}\right)=5 \operatorname{det}\left(A_{n-1}\right)-4 \operatorname{det}\left(A_{n-2}\right)$. Note that if we put $\operatorname{det}\left(A_{0}\right)=1$, this formula is valid for $n=2$ as well.
(b) For brevity, denote $a_{n}=\operatorname{det}\left(A_{n}\right)$, $v_{n}=\binom{a_{n}}{a_{n+1}}$. Then $v_{n+1}=A v_{n}$, where $A=\left(\begin{array}{cc}0 & 1 \\ -4 & 5\end{array}\right)$, so $v_{n}=A^{n} v_{0}=A^{n}\binom{1}{5}$. The eigenvalues of A are 1 and 4 , with the corresponding eigenvectors $\binom{1}{1}$ and $\binom{1}{4}$. Thus, if $C=\left(\begin{array}{ll}1 & 1 \\ 1 & 4\end{array}\right)$, we have $C^{-1} A C=\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)$, and

$$
A^{n}=C\left(\begin{array}{cc}
1 & 0 \\
0 & 4^{n}
\end{array}\right) C^{-1}=\left(\begin{array}{cc}
\frac{4-4^{n}}{3} & \frac{4^{n}-1}{3} \\
\frac{4-4^{n+1}}{3} & \frac{4^{n}+1-1}{3}
\end{array}\right)
$$

. Finally, $v_{n}=A^{n} v_{0}=\binom{\frac{4^{n+1}-1}{3}}{\frac{4^{n+2}-1}{3}}$, and $a_{n}=\frac{4^{n+1}-1}{3}$.

