MA 1112: Linear Algebra II
Selected answers/solutions to the assignment for March 19, 2019

1. (a) For x; = x» and y; = y» we get the value 2x; y; which also assumes negative values, so it is not a
scalar product.

(b) For x; = x» and y; = y» we get the value x% which is nonnegative but vanishes for a nonzero vector
0 .
1) 80 it is not a scalar product.

(c¢) This formula is manifestly bilinear and symmetric, and for x; = xp and y; = y, we get xf + 7yf
which implies positivity, so it is a scalar product.

(d) For x; = x» and y; = y» we obtain xf +2x1)1 + yf = (x1 + y1)?, and there are nonzero vectors for
which this vanishes, so it is not a scalar product.

(e) It is not symmetric, so it is not a scalar product.

2. First we make this set into a set of orthogonal vectors. We put
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To conclude, we normalise the vectors, obtaining the answer
2 -4 1

1 1 1

Valo] VI05| 5| VoIl ,

3. We first orthogonalise these vectors, noting that f_ll f(t)dtis equal to 0 if f(¢) is an odd function
(this shows that our computations are actually quite easy, because even powers of ¢ are automatically
orthogonal to odd powers):
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To conclude, we normalise these vectors, obtaining
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4. (a) The first two formulas are manifestly bilinear, the third one is not since

tr(A+ By + By) = tr(A) +tr(By) + tr(B) # tr(A) + tr(By) + tr(A) + tr(By) = tr(A+ By) + tr(A+ By),



the fourth one is not bilinear since det(2AB) = 4det(AB) # 2det(AB).

(b) All of them are symmetric: the first one is because of the property tr(AB) = tr(BA) proved in the
first semester, the second one because BAT = (ABT)T, the third one because A+ B = B + A, the fourth
one because det(AB) = det(A) det(B) = det(B) det(A) = det(BA).

(c) For A = B, the first one becomes tr(A2) which is not always nonnegative, e.g. for A= (0 - 1), the
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second one is the sum of squares of entries of A, so is positive, the third one is just tr(2A) so clearly is
not positive, the fourth one is det(A?) = det(A)? which is nonnegative but vanishes for many nonzero

1
matrices, e.g. for A = ( 0).
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5. We have
|V+w|2 =(V+w,v+w) = (v,Vv) +2(V,W) + (W,W),

which is less than
vV, V) + 2|v]Iw| + (W, w) = (Jv] + [w])?

by Cauchy-Schwartz inequality, so we get the statement of the problem after extracting square roots.



