MA 1112: Linear Algebra II
Selected answers/solutions to the assignment for March 19, 2019

1. (a) For $x_{1}=x_{2}$ and $y_{1}=y_{2}$ we get the value $2 x_{1} y_{1}$ which also assumes negative values, so it is not a scalar product.
(b) For $x_{1}=x_{2}$ and $y_{1}=y_{2}$ we get the value x_{1}^{2} which is nonnegative but vanishes for a nonzero vector $\binom{0}{1}$, so it is not a scalar product.
(c) This formula is manifestly bilinear and symmetric, and for $x_{1}=x_{2}$ and $y_{1}=y_{2}$ we get $x_{1}^{2}+7 y_{1}^{2}$ which implies positivity, so it is a scalar product.
(d) For $x_{1}=x_{2}$ and $y_{1}=y_{2}$ we obtain $x_{1}^{2}+2 x_{1} y_{1}+y_{1}^{2}=\left(x_{1}+y_{1}\right)^{2}$, and there are nonzero vectors for which this vanishes, so it is not a scalar product.
(e) It is not symmetric, so it is not a scalar product.
2. First we make this set into a set of orthogonal vectors. We put

$$
\begin{gathered}
e_{1}=f_{1}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right), \\
e_{2}=f_{2}-\frac{\left(e_{1}, f_{2}\right)}{\left(e_{1}, e_{1}\right)} e_{1}=\left(\begin{array}{c}
-4 / 5 \\
8 / 5 \\
1
\end{array}\right), \\
e_{3}=f_{3}-\frac{\left(e_{1}, f_{3}\right)}{\left(e_{1}, e_{1}\right)} e_{1}-\frac{\left(e_{2}, f_{3}\right)}{\left(e_{2}, e_{2}\right)} e_{2}=\left(\begin{array}{c}
1 / 7 \\
-2 / 7 \\
4 / 7
\end{array}\right) .
\end{gathered}
$$

To conclude, we normalise the vectors, obtaining the answer

$$
\frac{1}{\sqrt{5}}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right), \quad \frac{1}{\sqrt{105}}\left(\begin{array}{c}
-4 \\
8 \\
5
\end{array}\right), \quad \frac{1}{\sqrt{21}}\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right)
$$

3. We first orthogonalise these vectors, noting that $\int_{-1}^{1} f(t) d t$ is equal to 0 if $f(t)$ is an odd function (this shows that our computations are actually quite easy, because even powers of t are automatically orthogonal to odd powers):

$$
\begin{gathered}
e_{1}=1, \\
e_{2}=t-\frac{(1, t)}{(1,1)} 1=t, \\
e_{3}=t^{2}-\frac{\left(1, t^{2}\right)}{(1,1)} 1-\frac{\left(t, t^{2}\right)}{(t, t)} t=t^{2}-\frac{1}{3}, \\
e_{4}=t^{3}-\frac{\left(1, t^{3}\right)}{(1,1)} 1-\frac{\left(t, t^{3}\right)}{(t, t)} t-\frac{\left(t^{2}-\frac{1}{3}, t^{3}\right)}{\left(t^{2}-\frac{1}{3}, t^{2}-\frac{1}{3}\right)}\left(t^{2}-\frac{1}{3}\right)=t^{3}-\frac{3}{5}, \\
e_{5}=t^{4}-\frac{\left(1, t^{4}\right)}{(1,1)} 1-\frac{\left(t, t^{4}\right)}{(t, t)} t-\frac{\left(t^{2}-\frac{1}{3}, t^{4}\right)}{\left(t^{2}-\frac{1}{3}, t^{2}-\frac{1}{3}\right)}\left(t^{2}-\frac{1}{3}\right)-\frac{\left(t^{3}-\frac{3}{5}, t^{4}\right)}{\left(t^{3}-\frac{3}{5}, t^{3}-\frac{3}{5}\right)}\left(t^{3}-\frac{3}{5}\right)=t^{4}-\frac{6}{7} t^{2}+\frac{3}{35} .
\end{gathered}
$$

To conclude, we normalise these vectors, obtaining

$$
\frac{1}{\sqrt{2}}, \frac{\sqrt{3} t}{\sqrt{2}}, \frac{\sqrt{5}\left(3 t^{2}-1\right)}{2 \sqrt{2}}, \frac{\sqrt{7}\left(5 t^{3}-3 t\right)}{2 \sqrt{2}}, \frac{3\left(35 t^{4}-30 t^{2}+3\right)}{8 \sqrt{2}}
$$

4. (a) The first two formulas are manifestly bilinear, the third one is not since

$$
\operatorname{tr}\left(A+B_{1}+B_{2}\right)=\operatorname{tr}(A)+\operatorname{tr}\left(B_{1}\right)+\operatorname{tr}\left(B_{2}\right) \neq \operatorname{tr}(A)+\operatorname{tr}\left(B_{1}\right)+\operatorname{tr}(A)+\operatorname{tr}\left(B_{2}\right)=\operatorname{tr}\left(A+B_{1}\right)+\operatorname{tr}\left(A+B_{2}\right),
$$

the fourth one is not bilinear since $\operatorname{det}(2 A B)=4 \operatorname{det}(A B) \neq 2 \operatorname{det}(A B)$.
(b) All of them are symmetric: the first one is because of the property $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ proved in the first semester, the second one because $B A^{T}=\left(A B^{T}\right)^{T}$, the third one because $A+B=B+A$, the fourth one $\operatorname{because} \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(B A)$.
(c) For $A=B$, the first one becomes $\operatorname{tr}\left(A^{2}\right)$ which is not always nonnegative, e.g. for $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, the second one is the sum of squares of entries of A, so is positive, the third one is just $\operatorname{tr}(2 A)$ so clearly is not positive, the fourth one is $\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A)^{2}$ which is nonnegative but vanishes for many nonzero matrices, e.g. for $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
5. We have

$$
|\mathbf{v}+\mathbf{w}|^{2}=(\mathbf{v}+\mathbf{w}, \mathbf{v}+\mathbf{w})=(\mathbf{v}, \mathbf{v})+2(\mathbf{v}, \mathbf{w})+(\mathbf{w}, \mathbf{w})
$$

which is less than

$$
(\mathbf{v}, \mathbf{v})+2|\mathbf{v}||\mathbf{w}|+(\mathbf{w}, \mathbf{w})=(|\mathbf{v}|+|\mathbf{w}|)^{2}
$$

by Cauchy-Schwartz inequality, so we get the statement of the problem after extracting square roots.

