MA 1112: Linear Algebra II
Selected answers/solutions to the assignment for March 25, 2019

1. We have
$(\mathbf{v}, \mathbf{v})=\int_{-1}^{1}\left(t^{2}-t-1\right)^{2} d t=\int_{-1}^{1}\left(t^{4}-2 t^{3}-t^{2}+2 t+1\right) d t=26 / 15$,
$(\mathbf{v}, \mathbf{w})=\int_{-1}^{1}\left(t^{2}-t-1\right)\left(t^{3}+t^{2}+t+1\right) d t=\int_{-1}^{1}\left(t^{5}-t^{3}-t^{2}-2 t-1\right) d t=-8 / 3$,
$(\mathbf{w}, \mathbf{w})=\int_{-1}^{1}\left(t^{3}+t^{2}+t+1\right)^{2} d t=\int_{-1}^{1}\left(t^{6}+2 t^{5}+3 t^{4}+4 t^{3}+3 t^{2}+2 t+1\right) d t=192 / 35$, so the length of \mathbf{v} is $\sqrt{26 / 15}$ and the angle between \mathbf{v} and \mathbf{w} is

$$
\arccos \frac{-8 / 3}{\sqrt{26 / 15 \cdot 192 / 35}}=\arccos (-5 / \sqrt{78})
$$

2. The orthogonal complement of our subspace consists of all vectors which are orthogonal to both of the spanning vectors, that is vectors $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$ for which $x_{1}+x_{2}+x_{3}+x_{4}=0$ and $x_{1}-x_{3}+x_{5}=0$. Solving this system (the variables x_{3}, x_{4}, x_{5} are free), we get a parametrisation of the orthogonal complement: $\left(\begin{array}{c}u-w \\ w-2 u-v \\ u \\ v \\ w\end{array}\right)$, where $u, v, w \in \mathbb{R}$.
3. This function product is clearly bilinear. Also, it is symmetric because

$$
\operatorname{tr}\left(B A^{T}\right)=\operatorname{tr}\left(\left(B A^{T}\right)^{T}\right)=\operatorname{tr}\left(A B^{T}\right)
$$

Finally, it is positive definite because the trace of $A A^{T}$ is equal to the sum of squares of all matrix elements of A. If A is symmetric and B is skew-symmetric, then $(A, B)=\operatorname{tr}\left(A B^{T}\right)=-\operatorname{tr}(A B)$ and $(B, A)=\operatorname{tr}\left(B A^{T}\right)=\operatorname{tr}(B A)$, but since $\operatorname{tr}(A B)=\operatorname{tr}(B A)$, we conclude that $\operatorname{tr}(A B)=-\operatorname{tr}(A B)$, so $\operatorname{tr}(A B)=0$, and $(A, B)=0$.
4. The matrix of the corresponding bilinear form is

$$
A=\left(\begin{array}{ccc}
2 & a & 1 \\
a & 1 & 1-a \\
1 & 1-a & 1
\end{array}\right)
$$

We have $\Delta_{1}=2, \Delta_{2}=2-a^{2}, \Delta_{3}=-5 a^{2}+6 a-1$. All these numbers are positive if and only if $|a|<\sqrt{2}$ and $1 / 5<a<1$ (since the roots of $-5 a^{2}+6 a-1$ are $1 / 5$ and 1). In fact, the second condition implies the first one, so we get the answer $1 / 5<a<1$.
5. (a) $\Delta_{1}=2, \Delta_{2}=3, \Delta_{3}=4$, so by Sylvester's criterion the signature is $(3,0,0)$.
(b) $\Delta_{1}=1, \Delta_{2}=-2, \Delta_{3}=3$, so by Jacobi's theorem the signature can be read from the sequence $1 / 1$, $1 /(-2),-2 / 3$; it is $(1,2,0)$.
(c) $\Delta_{1}=-1, \Delta_{2}=1, \Delta_{3}=7$, so by Jacobi's theorem the signature can be read from the sequence $1 /(-1),-1 / 1,1 / 7$; it is $(1,2,0)$.
(d) $\Delta_{1}=-1, \Delta_{2}=1, \Delta_{3}=2, \Delta_{4}=-34$, so by Jacobi's theorem the signature can be read from the sequence $1 /(-1),-1 / 1,1 / 2,-2 / 34$; it is $(1,3,0)$.

