Solutions to this problem sheet are to be handed in after our class at 11am on Monday. Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. For each of the following matrices A, viewed as a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3},

- compute the rank of A;
- describe all eigenvalues and eigenvectors of A;
- determine whether there exists a change of coordinates making the matrix \mathcal{A} diagonal.
(a) $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$;
(b) $A=\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & -1 & 4\end{array}\right)$;
(c) $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & 5 & 2\end{array}\right)$.

2. Compute the rank of the matrix

$$
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

3. Let V be the space of all polynomials in t of degree at most n , and let $\varphi: V \rightarrow \mathrm{~V}$ be the linear transformation given by $\left(\varphi(p(t))=p^{\prime}(t)+3 p^{\prime \prime}(t)\right.$. Find the eigenvalues and the eigenvectors of φ, and show that there is no basis of V relative to which the matrix of φ is diagonal. (Hint: first show that φ has no non-zero eigenvalues.)
4. Prove that for every $n \times m$-matrix A of rank 1 there exist an $n \times 1$-matrix $B=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$ and a $1 \times n$-matrix $C=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ such that

$$
A=B C=\left(\begin{array}{cccc}
b_{1} c_{1} & b_{1} c_{2} & \ldots & b_{1} c_{m} \\
b_{2} c_{1} & b_{2} c_{2} & \ldots & b_{2} c_{m} \\
\vdots & \ddots & \ldots & \vdots \\
b_{n} c_{1} & b_{n} c_{2} & \ldots & b_{n} c_{m}
\end{array}\right)
$$

(Hint: denote by B a nonzero column of the matrix A, and find an appropriate C.)
5. Let $\alpha: U \rightarrow V$ and $\beta: V \rightarrow W$ be linear maps of vector spaces. Prove that $\operatorname{rk}(\beta \circ \alpha) \leqslant \operatorname{rk}(\alpha)$ and $\operatorname{rk}(\beta \circ \alpha) \leqslant \operatorname{rk}(\beta)$. (As always, $\beta \circ \alpha$ denotes the composite map $(\beta \circ \alpha)(u)=\beta(\alpha(u))$.)

