Solutions to this problem sheet are to be handed in after our class at 11am on Monday. Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

We consider the two following subspaces of \mathbb{R}^{4} : the subspace U_{1} spanned by the vectors

$$
\left(\begin{array}{c}
0 \\
-1 \\
-6 \\
-9
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-5 \\
-7
\end{array}\right),\left(\begin{array}{l}
6 \\
5 \\
0 \\
3
\end{array}\right)
$$

and the subspace U_{2} spanned by the vectors

$$
\left(\begin{array}{l}
5 \\
6 \\
3 \\
2
\end{array}\right),\left(\begin{array}{c}
6 \\
6 \\
-1 \\
2
\end{array}\right),\left(\begin{array}{c}
7 \\
1 \\
-15 \\
-7
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right)
$$

1. Find a basis of U_{1} and a basis of U_{2}.
2. Find a basis for the intersection $\mathrm{U}_{1} \cap \mathrm{U}_{2}$.
3. Compute a basis of U_{1} relative to $\mathrm{U}_{1} \cap \mathrm{U}_{2}$.
4. Compute a basis of U_{2} relative to $\mathrm{U}_{1} \cap \mathrm{U}_{2}$.
5. Is the subspace spanned by the vectors $v_{1}=\left(\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$ an invariant subspace of the linear transformation φ of \mathbb{R}^{3} that multiplies every vector by the matrix $A=\left(\begin{array}{ccc}-1 & -9 & -6 \\ 6 & 20 & 12 \\ -9 & -24 & -13\end{array}\right)$? Explain your answer.
