MA 1112: Linear Algebra II

Solutions to this problem sheet are to be handed in after our class at 11am on Monday. Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

Recall that in class we proved that for every linear transformation $\varphi: \mathrm{V} \rightarrow \mathrm{V}$ with $\varphi^{\mathrm{k}}=0$ for some k, it is possible to choose a basis

$$
\begin{gathered}
e_{1}^{(1)}, e_{2}^{(1)}, e_{3}^{(1)}, \ldots, e_{n_{1}}^{(1)} \\
e_{1}^{(2)}, e_{2}^{(2)}, \ldots, e_{n_{2}}^{(2)} \\
\ldots \\
e_{1}^{(l)}, \ldots, e_{n_{l}}^{(l)}
\end{gathered}
$$

of V such that for each "thread"

$$
e_{1}^{(p)}, e_{2}^{(p)}, \ldots, e_{n_{p}}^{(p)}
$$

we have

$$
\varphi\left(e_{1}^{(\mathfrak{p})}\right)=e_{2}^{(\mathfrak{p})}, \varphi\left(e_{2}^{(\mathfrak{p})}\right)=e_{3}^{(\mathfrak{p})}, \ldots, \varphi\left(e_{n_{\mathfrak{p}}}^{(\mathfrak{p})}\right)=0 .
$$

In questions $1-4$, your goal is, given a vector space V and a transformation $\varphi: \mathrm{V} \rightarrow \mathrm{V}$,

- compute $\varphi^{2}, \varphi^{3}, \ldots$, and find the smallest k such that $\varphi^{k}=0$,
- compute $\operatorname{rk}(\varphi), \operatorname{rk}\left(\varphi^{2}\right), \ldots$, and $\operatorname{null}(\varphi), \operatorname{null}\left(\varphi^{2}\right), \ldots$,
- find some basis of V split into several "threads" on which φ acts as described above.

1. $V=\mathbb{R}^{2}, \varphi$ is multiplication by the matrix $A=\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)$.
2. $\mathrm{V}=\mathbb{R}^{3}, \varphi$ is multiplication by the matrix $\mathrm{A}=\left(\begin{array}{ccc}-18 & 24 & 36 \\ -18 & 24 & 36 \\ 3 & -4 & -6\end{array}\right)$.
3. $\mathrm{V}=\mathbb{R}^{3}, \varphi$ is multiplication by the matrix $\mathrm{A}=\left(\begin{array}{ccc}-36 & -24 & 2 \\ 54 & 36 & -3 \\ 3 & 2 & 0\end{array}\right)$.
4. $\mathrm{V}=\mathbb{R}^{4}, \varphi$ is multiplication by the matrix $A=\left(\begin{array}{cccc}2 & 4 & 4 & 4 \\ -2 & -4 & -5 & -6 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4\end{array}\right)$.
5. For an $n \times n$-matrix A we have $A^{N}=0$ for some N. Prove that $A^{n}=0$.
