Solutions to this problem sheet are to be handed in after our class at 5pm on Tuesday March 19 (because Monday is a holiday).
Please attach a cover sheet with a declarationhttp://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. Which of the following formulas define scalar products on \mathbb{R}^{2} ? Explain your answer.
(a) $\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}\right)=x_{1} y_{2}+x_{2} y_{1}$;
(b) $\left.\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}\right)=x_{1} x_{2}$;
(c) $\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}\right)=x_{1} x_{2}+7 y_{1} y_{2}$;
(d) $\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}=x_{1} x_{2}+x_{1} y_{2}+x_{2} y_{1}+y_{1} y_{2}$;
(e) $\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}\right)=x_{1} x_{2}+x_{1} y_{2}+y_{1} y_{2}$;
2. For the space \mathbb{R}^{3} with the standard inner product, find the orthogonal basis e_{1}, e_{2}, e_{3} obtained by Gram-Schmidt orthogonalisation from $f_{1}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right), f_{2}=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right), f_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
3. For the vector space of all polynomials in t of degree at most 4 and the scalar product on this space given by

$$
(p(t), q(t))=\int_{-1}^{1} p(t) q(t) d t,
$$

find the result of Gram-Schmidt orthogonalisation of the vectors $1, t, t^{2}, t^{3}, t^{4}$.
4. For the vector space V of all 2×2-matrices with real entries, consider the following four functions with two arguments:

$$
(A, B)_{1}=\operatorname{tr}(A B), \quad(A, B)_{2}=\operatorname{tr}\left(A B^{T}\right), \quad(A, B)_{3}=\operatorname{tr}(A+B), \quad(A, B)_{4}=\operatorname{det}(A B)
$$

Which of them are (a) bilinear? (b) symmetric? (c) positive (nonnegative for $A=B$ and only zero for $A=B$ when $A=B=0$)? Show that only the second one defines a scalar product.
5. Show that for two vectors \mathbf{v} and \mathbf{w} of a Euclidean vector space V we have

$$
|\mathbf{v}+\mathbf{w}| \leqslant|\mathbf{v}|+|\mathbf{w}| .
$$

(Hint: use definition of length and Cauchy-Schwartz.)

