Solutions to this problem sheet are to be handed in after our class at 11am on Monday March 25. Please attach a cover sheet with a declarationhttp://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. For the space V of all polynomials in t of degree at most 3 with the scalar product

$$
(p(t), q(t))=\int_{-1}^{1} p(t) q(t) d t
$$

find the length of the vector $\mathbf{v}=t^{2}-t-1$ and the angle between \mathbf{v} and $\mathbf{w}=t^{3}+t^{2}+t+1$.
2. For the subspace $U \in \mathbb{R}^{5}$ spanned by the vectors $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}1 \\ 0 \\ -1 \\ 0 \\ 1\end{array}\right)$, determine some basis for the subspace U^{\perp}. The scalar product on \mathbb{R}^{5} is the standard one $(v, w)=v_{1} w_{1}+\ldots+v_{5} w_{5}$.
3. Show that the formula $(A, B)=\operatorname{tr}\left(A B^{T}\right)$ is a scalar product on the vector space of real $n \times n$ matrices, and that $(A, B)=0$ for each pair of matrices where A is symmetric $\left(A^{T}=A\right)$ and B is skewsymmetric ($B^{T}=-B$).
4. Use the Sylvester's criterion to find all values of the parameter a for which the quadratic form $2 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 a x_{1} x_{2}+2 x_{1} x_{3}+(2-2 a) x_{2} x_{3}$ on \mathbb{R}^{3} is positive definite.
5. For each of the following matrices of bilinear forms, compute the determinants $\Delta_{1}, \ldots, \Delta_{n}$, and use the Jacobi theorem to determine the signature of the corresponding quadratic form:
(a) $\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$; (b) $\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 3\end{array}\right)$; (c) $\left(\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -2 & 2 \\ 1 & 2 & -3\end{array}\right)$; (d) $\left(\begin{array}{cccc}-1 & 1 & 1 & 1 \\ 1 & -2 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -4\end{array}\right)$.

