MA 1112: Linear Algebra II Homework problems for March 25, 2019

Solutions to this problem sheet are to be handed in after our class at 11am on Monday March 25. Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism. On the same cover sheet, please put your name, student number, and name of the degree (Maths/TP/TSM), and staple all the sheets together. (Failure to do that may result in misplaced/lost sheets, for which no responsibility can be taken by instructors.)

1. For the space V of all polynomials in t of degree at most 3 with the scalar product

$$(p(t), q(t)) = \int_{-1}^{1} p(t)q(t) dt,$$

find the length of the vector $\mathbf{v} = t^2 - t - 1$ and the angle between \mathbf{v} and $\mathbf{w} = t^3 + t^2 + t + 1$.

2. For the subspace $U \in \mathbb{R}^5$ spanned by the vectors $\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}$ and $\begin{pmatrix} 1\\0\\-1\\0\\1 \end{pmatrix}$, determine some basis for the

subspace U^{\perp} . The scalar product on \mathbb{R}^5 is the standard one $(v, w) = v_1 w_1 + \ldots + v_5 w_5$.

3. Show that the formula $(A, B) = tr(AB^T)$ is a scalar product on the vector space of real $n \times n$ matrices, and that (A, B) = 0 for each pair of matrices where A is symmetric $(A^T = A)$ and B is skewsymmetric ($B^T = -B$).

4. Use the Sylvester's criterion to find all values of the parameter *a* for which the quadratic form $2x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2x_1x_3 + (2-2a)x_2x_3$ on \mathbb{R}^3 is positive definite. **5.** For each of the following matrices of bilinear forms, compute the determinants $\Delta_1, \dots, \Delta_n$, and use

the Jacobi theorem to determine the signature of the corresponding quadratic form:

$$(\mathbf{a}) \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}; (\mathbf{b}) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix}; (\mathbf{c}) \begin{pmatrix} -1 & 1 & 1 \\ 1 & -2 & 2 \\ 1 & 2 & -3 \end{pmatrix}; (\mathbf{d}) \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -2 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -4 \end{pmatrix}.$$